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ABSTRACT

This paper provides evidence that the Renyi Entropy and information are both limiting case of

the  Shannon  Entropy.  In  addition,  experimental  evidence  supports  these findings.  As  a  last

thought, we offer some broad conclusions on the usefulness of entropy metrics. In an appendix, a

brief history of the idea of physical entropy is given.

INTRODUCTION

Early in the twentieth century, the development of telecommunications inspired a number of

scholars  to  investigate  the  information  content  of  signals.  These  early  attempts were

rationalized into a cogent mathematical theory of communication in Shannon’s foundational

work, which was based on publication by Nyquist [8,9] and Hartley[6]. This work launched

the field of study that is now known as information theory. According to Shannon [12], a

measurement of the amount of information S(P) included in the series of events 𝑝1 𝑝𝑛

must meet three criteria.

 S should be continuous with 𝑝𝑖 

 If all the 𝑝𝑖are equally probably, so 𝑝𝑖 = 1𝑁 , then S should be monotonic increasing

function of N. 

 S should be additive. 

He then prove that the only S satisfying these three requirements is

Where M is a positive constant. Since then, this amount has been referred to as the Shannon

entropy. In instance, Shannon entropy is frequently cited as the source of the mutual information

measure used in multimodal medical picture registration. 
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Numerous more measures of information or entropy have been produced as a result of extensions

to Shannon’s initial study. As an illustration, try loosening the third. Renting was able to expand

Shannon entropy to a continuous family of entropy measures that adhere to Shannon’s criterion

for additivity.

The Renyi [11] Entropy tends to Shannon Entropy as q → 1 

In  addition  Kandell  [10]  defines  the  information  content  of  a  probability  distribution  in  the

discrete as 

Which again tends to Shannon Entropy as q → 1 

The  claims  that  these  expressions  regenerate  Shannon  entropy  in  the  limit  have  not  been

supported by any proofs, so we provide them here and test the conclusions experimentally on a

sample  of  uniform  probabilities.  We  end  by  making  a  few  observations  about  the  general

theoretical viability of entropy metrics. 

SHANNON ENTROPY AND RENYI ENTROPY

Given a sample of probabilities 𝑝𝑖 
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SHANNON ENTROPY AND INFORMATION: 

The information of sample of probabilities 𝑝𝑖, where 
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EXPERIMENTAL TESTING:

Plotting Shannon entropy, Renyi entropy and information against q for a sample with uniform

probability corroborated the aforementioned findings. A uniform distribution was used to create

ten random samples, which were then normalized so that their sum was one. The information and

Shannon  and  Renyi  entropies  were  then  plotted  against  q.  The  three  measures  converge  as

expectedas q approaches towards 1. Around this momentthere has been good behavior. 

For a sample of uniform probability with N=10, various entropy metrics . The Shannon Entropy

fpr a tends to 1 as the Renyi entropy and information converge . The intersection point in the left

hand image is enlarged in the right hand image. 

CONCLUSION

This paper has shown that both the Renyi entropy  𝑆𝑞(P) and information  𝐾𝑞(P) tend to the

Shannon  Entropy  in  the  limit  of  the  q  goes  to  1.  The  Renyi  entropy  is  also  a  monotonic

information function. However, when applied to a continuous distribution, as Kendall [10] notes,

these metrics are scale dependent, rendering their absolute values useless. As a result, they are

typically  only  appropriate  for  use in  comparative  or  differential  process.  Renyi  entropy and

information  can  be  utilised  interchangeably  in  all  practical  applications,  according  to  the

monotonic connection. 

Despite the fact that these entropy measures belong to a family of self consistent functions, their

scale dependence restricts their use because they cannot then be regarded as well found statistics.

For  instance,  the  mutual  information  measures  that  are  frequently  employed  in  information

theoretic  multi  modal  medical  picture  coregistration  [15]  can  be  derived  from  concept  of

Shannon entropy. However, recent research [13,4,1,2,3] has revealed that mutual information is
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actually a biassed version of maximum likelihood, and that Shannon entropy is the same thing as

the likelihood function when used to determine the information content of signals made up of a

discrete alphabet of independent symbols. The statistical validity of such procedures would be in

doubt even though the Renyi entropy may be utilised to construct a continuous family of mutual

information measures that could be applied for example, to coregistration. 

REFERENCES: 

1. P  A  Bromiley,  M  Pokric,  and  N  A  Thacker.  Computing  covariances  for  mutual

information coregistration. In  Proceedings MIUA 2004, 2004. 

2. P A Bromiley, M Pokric, and N A Thacker. Empirical evaluation of covariance matrices

for mutual information  coregistration. In Proceedings MICCAI 2004, 2004. 

3. P A Bromiley, M. Pokric, and N A Thacker. Tina memo 2004-001: Empirical evaluation

of covariance matrices  for mutual information coregistration. Technical report, Imaging

Science  and  Biomedical  Engineering  Division,   Medical  School,  University  of

Manchester, 2004. 

4. P  A Bromiley  and  N A Thacker.  Tina  memo 2003-002:  Computing  covariances  for

mutual information  coregistration 2. Technical report, Imaging Science and Biomedical

Engineering Division, Medical School,  University of Manchester, 2003. 

5. A Cho. A fresh take on disorder, or disorderly science? Science, 297:1268–1269, 2002. 

6. R V L Hartley. Transmission of information. Bell Systems Technical Journal, page 535,

July 1928. 

7. J Havrda and F Charvat. Quantification method of classification processes: concept of

structural α-entropy. 

8. Kybernetika,  3:30–35, 1967.  [8] H Nyquist.  Certain factors affecting telegraph speed.

Bell Systems Technical Journal, page 324, April 1924. 

9. H Nyquist. Certain topics in telegraph transmission theory. A.I.E.E. Trans.,  page 617,

April 1928. 

10. K Ord and S  Arnold.  Kendall’s  Advanced Theory  of  Statistics:  Distribution  Theory.

Arnold, 1998. 

11. A Renyi. On measures of entropy and information. In Proc. Fourth Berkeley Symp. Math.

Stat. Prob., 1960,  volume 1, page 547, Berkeley, 1961. University of California Press. 

ISSN 2583-6234 IJFIEST 80

http://journal.inence.org/index.php/ijfiest


Volume 2, Issue 2, June – 2023 PP 76-81 International Journal of Futuristic Innovation in
Engineering, Science and Technology (IJFIEST)

12. C E Shannon. A mathematical theory of communication. Bell Systems Technical Journal,

27:379–423 and  623–656, Jul and Oct 1948. 

13. N A Thacker  and P  A Bromiley.  Tina  memo 2001-013:  Computing  covariances  for

mutual information coreg-  istration. Technical report, Imaging Science and Biomedical

Engineering Division, Medical School, University  of Manchester, 2001. 

14. C Tsallis.  Possible  generalization  of  Boltzmann-Gibbs statistics.  Journal  of  Statistical

Physics,  52:479–487,   1988.   P  Viola  andWMWells.  Alignment  by  maximisation  of

mutual information. International Journal of Computer  Vision, 24(2):137–154, 1997.

ISSN 2583-6234 IJFIEST 81

http://journal.inence.org/index.php/ijfiest

