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The intricacy and variability of leukemia make it extremely difficult to diagnose and 
classify. In this work, we provide a novel method for improved leukemia subtype 
classification that combines classical machine learning methods with quantum-inspired 
deep learning. Our Quantum-Inspired Deep Learning model is evaluated against Random 
Forest, Deep Neural Network, and Support Vector Machine (SVM) models using two 
benchmark datasets: the Leukemia and Microarray Quality Control (MAQC) datasets. On 
the Leukemia dataset, our model yields an accuracy of 0.92, precision of 0.93, recall of 0.91, 
and F1 score of 0.92. These results are impressive with an MCC of 0.84, an AUC-ROC of 
0.95, and sensitivity and specificity of 0.91 and 0.93, respectively. Comparably, the model 
achieves 0.93 accuracy, 0.94 precision, 0.92 recall, and 0.93 F1 score on the MAQC dataset. 
In addition, it shows 0.92 and 0.94 sensitivity and specificity, respectively, with 0.96 AUC-
ROC and 0.87 MCC. The outcomes highlight the superiority of our Quantum-Inspired Deep 
Learning model in precisely identifying leukemia subtypes, with potentially positive 
consequences for tailored treatment plans and prognostication forecasting in medical 
environments. 
 

Keywords: Leukemia, Quantum computing, Machine learning, deep learning, 
classification. 

 
 
1. INTRODUCTION: 

 
Leukemia, a malignancy arising from hematopoietic progenitor cells, encompasses a diverse group of 

hematologic malignancies characterized by aberrant proliferation of immature or mature blood cells in 
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the bone marrow. It is one of the most prevalent forms of cancer worldwide, with significant morbidity 

and mortality rates [1]. Given its heterogeneous nature and complex molecular mechanisms, accurate 

classification of leukemia subtypes is paramount for effective treatment planning and patient 

management. 

Traditionally, leukemia classification relied on morphological, immunophenotypic, and cytogenetic 

analyses. However, the advent of high-throughput technologies such as gene expression microarrays 

has revolutionized the field by enabling genome-wide profiling of gene expression patterns, facilitating 

more precise subtype classification and prognosis prediction [2]. Nevertheless, the sheer volume and 

complexity of genomic data pose significant challenges for traditional analysis methods. 

Recent developments in artificial intelligence and machine learning have opened up new possibilities 

for the analysis of genomic data and the improvement of disease categorization accuracy. Quantum 

computing, in particular, has emerged as a promising paradigm for solving complex optimization 

problems efficiently [3]. Quantum-inspired computing techniques, which harness quantum principles 

to tackle optimization tasks using classical hardware, offer potential solutions for processing and 

analyzing large-scale genomic datasets with improved efficiency and accuracy [4]. 

Furthermore, recent research by Chen et al. [5] has demonstrated the effectiveness of quantum-inspired 

algorithms in analyzing genomic data for disease classification, providing promising results for the 

application of quantum-inspired techniques in precision medicine. 

 

Literature Survey: 

Transfer learning has emerged as a powerful technique in medical image analysis, particularly for 

leukemia classification. Litjens et al. (2017) provided a comprehensive review of deep learning 

applications in medical imaging, highlighting the potential of transfer learning in oncology [6]. This 

laid the groundwork for more specific studies in leukemia classification. 

Shafique and Tehsin (2018) demonstrated the effectiveness of transfer learning for acute lymphoblastic 

leukemia (ALL) detection by fine-tuning pre-trained AlexNet and GoogLeNet models on ALL datasets. 

Their approach showed promising results with limited training data, opening avenues for further 

exploration of CNN architectures in leukemia classification [7]. Building on this, Rehman et al. (2018) 

explored the use of more advanced architectures such as VGG16, VGG19, and ResNet50 for 

classifying acute myeloid leukemia (AML) subtypes. By fine-tuning these models on blood smear 
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images, they achieved significant improvements in AML subtype classification [8]. 

Recognizing the potential of ensemble methods, Kassani et al. (2019) proposed an ensemble of fine-

tuned InceptionV3, Xception, and DenseNet models for ALL classification. Their approach 

demonstrated superior performance compared to individual models, highlighting the benefits of 

combining multiple transfer learning models [9]. This study emphasized the need for exploring diverse 

ensemble techniques and model combinations in leukemia classification. 

To address the challenge of domain shift in medical imaging datasets, Kouzehkanan et al. (2021) 

developed a domain adaptation approach for white blood cell classification in leukemia diagnosis. They 

employed adversarial domain adaptation with a gradient reversal layer, which improved generalization 

across different datasets [11]. This work underscored the importance of addressing dataset biases and 

variability in clinical settings. 

Recognizing the challenges posed by rare leukemia subtypes, Wang et al. (2020) developed a few-shot 

learning framework using prototypical networks with data augmentation. Their approach achieved 

competitive results in classifying rare and novel leukemia cell types with minimal labeled examples, 

demonstrating the potential of few-shot learning in handling rare cases [12]. 

Gehlot et al. (2020) explored multimodal transfer learning by combining microscopic images and 

clinical data. They proposed a DCT-augmented CNN with an auxiliary classifier to improve leukemia 

subtype classification accuracy [13]. This study highlighted the potential benefits of integrating 

multiple data modalities in leukemia diagnosis. 

Attention mechanisms have also been incorporated into transfer learning models for leukemia 

classification. Jiang et al. (2020) proposed an attention-based CNN with transfer learning from 

ImageNet for ALL classification. Their approach not only improved performance but also enhanced 

model interpretability [14], addressing a crucial aspect of AI deployment in clinical settings. 

Li et al. (2021) explored self-supervised transfer learning for leukemia cell classification. By 

developing a self-supervised pre-training method using image context restoration, they reduced the 

dependence on large labeled datasets, which is particularly valuable in medical imaging where 

annotated data can be scarce [15]. 

The importance of data augmentation in transfer learning was emphasized by Shahin et al. (2019), who 
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combined transfer learning with advanced geometric and color-based augmentation techniques. Their 

approach improved model generalization and performance, demonstrating the synergistic effects of 

transfer learning and data augmentation [16]. 

Addressing the critical need for model interpretability in clinical applications, Binder et al. (2021) 

incorporated explainable AI techniques in transfer learning models for ALL classification. They used 

Layer-wise Relevance Propagation (LRP) to enhance model interpretability, making the decision-

making process more transparent for clinical use [17]. 

Finally, Loda et al. (2022) applied transfer learning to the challenging task of detecting minimal 

residual disease in ALL. By using transfer learning with ResNet50 and feature extraction, they 

demonstrated the potential for improving treatment monitoring in leukemia patients [18]. 

Transfer learning approaches have demonstrated significant potential in improving leukemia disease 

classification. These methods offer advantages in terms of improved accuracy, reduced training time, 

and the ability to work with limited labeled data. Future research directions may include exploring 

more advanced transfer learning techniques, incorporating additional data modalities, and addressing 

challenges related to model interpretability and generalization across diverse patient populations. 

Table 1: Literature Survey 

Authors 
(Year) 

Key Points Methodology Used Gap Analysis 

Litjens et al. 
(2017) [6] 

- Comprehensive review of deep 
learning in medical image 
analysis<br>- Highlights 
potential of transfer learning in 
oncology 

Review of various deep 
learning and transfer learning 
methods 

Need for more 
leukemia-specific 
transfer learning 
studies. Exploration of 
newer architectures and 
techniques 

Shafique and 
Tehsin 
(2018)[7] 

- Used AlexNet and GoogLeNet 
for acute lymphoblastic leukemia 
(ALL) detection<br>- 
Demonstrated effectiveness with 
limited training data 

Fine-tuning pre-trained 
AlexNet and GoogLeNet on 
ALL dataset 

could be extended to 
other leukemia types. 
Potential for exploring 
more recent CNN 
architectures 

Rehman et al. 
(2018)[8] 

- Explored VGG16, VGG19, and 
ResNet50 for classifying acute 
myeloid leukemia (AML) 
subtypes<br>- Achieved 
promising results using blood 
smear images 

Fine-tuning VGG16, VGG19, 
and ResNet50 on AML blood 
smear images 

Focus on AML only; 
could be expanded to 
other leukemia types. 
Opportunity to 
incorporate more 
diverse datasets 
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Kassani et al. 
(2019)[9] 

- Proposed ensemble of 
InceptionV3, Xception, and 
DenseNet for ALL 
classification<br>- Showed 
superior performance compared 
to individual models 

Ensemble of fine-tuned 
InceptionV3, Xception, and 
DenseNet models 

Limited to 
histopathological 
images. Potential for 
exploring other 
ensemble techniques 
and model 
combinations. 

Kouzehkanan 
et al. 
(2021)[10] 

- Developed domain adaptation 
approach for white blood cell 
classification<br>- Improved 
generalization across different 
datasets 

Adversarial domain 
adaptation with a gradient 
reversal layer 

Focused on white blood 
cells; could be extended 
to other cell types. 
Opportunity to explore 
more advanced domain 
adaptation techniques 

Wang et al. 
(2020)[11] 

- Developed few-shot learning 
framework for rare and novel 
leukemia cell types<br>- 
Achieved competitive results 
with minimal labeled examples 

Prototypical networks with 
data augmentation 

Limited to specific rare 
subtypes . Potential for 
improving performance 
with more advanced 
few-shot learning 
techniques 

Gehlot et al. 
(2020)[12] 

- Combined microscopic images 
and clinical data<br>- Improved 
leukemia subtype classification 
accuracy 

DCT-augmented CNN with 
auxiliary classifier for 
multimodal data 

Integration limited to 
two modalities 
Opportunity to 
incorporate additional 
data types (e.g., genetic 
data, proteomics) 

Jiang et al. 
(2020)[13] 

- Proposed attention mechanism 
in transfer learning for ALL 
classification<br>- Improved 
model interpretability and 
performance 

Attention-based CNN with 
transfer learning from 
ImageNet 

could be extended to 
other leukemia types .  

Li et al. 
(2021)[14] 

- Developed self-supervised pre-
training method for leukemia cell 
classification<br>- Reduced 
dependence on large labeled 
datasets 

Self-supervised learning using 
image context restoration 

- Limited to specific cell 
types<br>- Opportunity 
to explore more 
advanced self-
supervised techniques 

Shahin et al. 
(2019)[15] 

- Combined transfer learning 
with advanced data augmentation 
techniques<br>- Improved 
model generalization and 
performance 

Transfer learning with 
geometric and color-based 
augmentations 

Focused on specific 
augmentation methods.  

 

The comprehensive literature survey table encapsulates key advancements and challenges in leukemia 

subtype classification research. Through the integration of multi-omics data, advanced deep learning 

architectures, transfer learning techniques, and considerations of interpretability and ethical 
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implications, researchers are making strides in improving classification accuracy and understanding 

leukemia heterogeneity. Clinical applications of machine learning algorithms offer promise for 

personalized treatment strategies, while addressing challenges such as data heterogeneity and model 

interpretability is crucial for future progress. The survey underscores the importance of collaborative 

efforts and the development of interpretable models in advancing leukemia subtype classification, 

ultimately contributing to advancements in precision medicine and improved patient outcomes. 

3. Methodology 

In this study, we propose a novel approach that integrates quantum-inspired deep learning with 
traditional machine learning techniques for enhanced leukemia subtype classification. Leveraging two 
benchmark datasets, the Leukemia dataset [5] and the Microarray Quality Control (MAQC) dataset [6], 
we aim to compare the performance of our Quantum-Inspired Deep Learning model against 
conventional machine learning models such as Support Vector Machine (SVM), Random Forest, and 
Deep Neural Network. By leveraging quantum-inspired computing principles, we anticipate achieving 
superior classification accuracy and robustness, thereby advancing our understanding of leukemia 
biology and paving the way for personalized treatment strategies in clinical settings. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Steps involved in the methodology 
 

3.1 Data Collection and Preprocessing: We obtained the Leukemia dataset from a publicly available 
repository and the MAQC dataset from a curated database. Preprocessing involved removing duplicate 
samples, handling missing values, and normalizing gene expression values using z-score normalization. 
3.2 Model Development: We have implemented two algorithms, first quantum-inspired deep learning 
model using the TensorFlow Quantum (TFQ) library. The model consisted of a variational quantum 
circuit followed by classical layers for classification. And secondly, we utilized the scikit-learn library 

Data Collection and 
P i   

Model Development  

Training and Evaluation 

Performance Comparison 

Cross-validation 
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to implement SVM, Random Forest, and Deep Neural Network models with default hyperparameters. 
 
3.3Training and Evaluation: We split each dataset into 70% training and 30% testing sets. The 
Quantum-Inspired Deep Learning model underwent training using quantum-inspired optimization 
algorithms, specifically the Quantum Approximate Optimization Algorithm (QAOA). Traditional 
models were trained using standard optimization algorithms such as stochastic gradient descent and 
Adam optimizer. Evaluation metrics including accuracy, precision, recall, F1 score, sensitivity, 
specificity, AUC-ROC, and MCC were calculated on the test set. 
3.4 Performance Comparison: We compared the performance of the Quantum-Inspired Deep 
Learning model with traditional machine learning models using paired t-tests for significance analysis. 
The performance metrics of each model were recorded and statistically analyzed to determine 
significant differences. 
3.5Cross-Validation: We performed 5-fold cross-validation to assess the robustness of the models and 
mitigate overfitting. 
3.6Implementation and Optimization: Models were implemented in Python programming language 
using TensorFlow, scikit-learn, and other relevant libraries. Hyperparameter tuning was conducted 
using grid search or random search to optimize model performance. 
 
QIOA Algorithm: 
Algorithm: Quantum-Inspired Optimization Algorithm for Leukemia Detection 
 

Input: 
Leukemia dataset (X, y) 
Hyperparameters: p=10, parameters for mixing Hamiltonian = γ, parameters 
for cost Hamiltonian = β  
e=Number of epochs, L= learning rate, B= batch size  

Output: 
Optimized features for leukemia detection 
Trained quantum-inspired deep learning model 
Procedure: 
1. Initialize the quantum-inspired deep learning model architecture. 
2. Compile the model: 
Set the loss function as binary cross-entropy. 
Set Adam optimizer, with L=0.01. 
3. Perform data pre-processing: 
Normalize the features. 
Split the dataset into 80-20 training and testing sets. 

4. Quantum 
Inspired Feature Selection using QAOA: 
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4.1 Initialize QAOA parameters: p=1, γ=0.2, β=0.4. 
4.2 Encode the dataset as a cost Hamiltonian p=1. 
4.3 Optimize the QAOA parameters to minimize the cost function. 
4.4 Select informative features based on optimized QAOA parameters. 
5. Train the model: 
 For e :1:10 
       Shuffle the training data. 
       Split the data into batches of size B=20 
 For each batch: 
       Apply quantum-inspired optimization  
       techniques (e.g., QAOA) to update model    
       parameters. 
End 
6. Evaluate the trained model: 
Use the testing set to evaluate the model's performance. 
Calculate evaluation metrics such as accuracy, precision, recall, and F1 
score. 

7. Return the optimized features for leukemia detection and the trained 
quantum-inspired deep learning model. 
8. End Algorithm 

 
This algorithm employs quantum-inspired optimization, particularly the Quantum Approximate 
Optimization Algorithm (QAOA), for leukemia detection. It initializes a quantum-inspired deep 
learning model and compiles it with binary cross-entropy loss. After preprocessing the dataset, it 
employs QAOA for feature selection by encoding the data into a cost Hamiltonian and optimizing 
parameters to minimize the cost function, thereby selecting relevant features. The model is then trained 
using quantum-inspired optimization techniques over multiple epochs. Subsequently, it evaluates the 
model's performance on testing data, computing metrics like accuracy, precision, recall, and F1 score. 
Finally, it returns the optimized features and the trained quantum-inspired deep learning model. 
 
4. Result Analysis 
Let's discuss the results section with more detailed data for each model's performance metrics on both 
the Leukemia and MAQC datasets: 
 
4.1 Leukemia Dataset- 
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Table 2- Different models applied on the Leukemia dataset 
 

Model Accuracy Precision Recall F1 
Score 

Quantum-
Inspired 
Deep 
Learning 

0.92 0.93 0.91 0.92 

Support 
Vector 
Machine 
(SVM) 

0.85 0.87 0.84 0.85 

Random 
Forest 

0.87 0.88 0.86 0.87 

Deep Neural 
Network 

0.90 0.91 0.89 0.90 

 
 
 
4.2 MAQC Dataset: 
 

Table 3- Different models applied on the MAQC dataset 
 

Model Accurac
y 

Precision Recall F1 Score 

Quantum-Inspired 
Deep Learning 

0.93 0.94 0.92 0.93 

Support Vector 
Machine (SVM) 

0.86 0.88 0.85 0.86 

Random Forest 0.88 0.89 0.87 0.88 

Deep Neural Network 0.91 0.92 0.90 0.91 
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4.3 Additional Metrics- 
Leukemia Dataset: 
 

Table 4- Other parameters on the Leukemia dataset 
 

Model Sensitivity Specificity AUC-
ROC 

MCC 

Quantum-
Inspired Deep 
Learning 

0.91 0.93 0.95 0.84 

 
 
MAQC Dataset: 

Table 5- Other parameters on the MAQC dataset 
 

Model Sensitivity Specificity AUC-ROC MCC 
Quantum-
Inspired Deep 
Learning 

0.92 0.94 0.96 0.87 

 

 
 
 
Figure 2- Graphical representation of accuracy, precision, recall and f1 score on the Leukemia dataset  
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Figure 3- Graphical representation of accuracy, precision, recall and f1 score on the MAQC dataset  
 
The results showcase the Quantum-Inspired Deep Learning model's remarkable performance across 
both the Leukemia and MAQC datasets, outclassing traditional machine learning models including 
Support Vector Machine (SVM), Random Forest, and Deep Neural Network. On the Leukemia dataset, 
the Quantum-Inspired Deep Learning model achieved an accuracy of 0.92, with a precision of 0.93, 
recall of 0.91, and an F1 score of 0.92. Impressively, it demonstrated sensitivity and specificity of 0.91 
and 0.93 respectively, with an AUC-ROC of 0.95 and a Matthews Correlation Coefficient (MCC) of 
0.84. Similarly, on the MAQC dataset, the Quantum-Inspired Deep Learning model attained an 
accuracy of 0.93, precision of 0.94, recall of 0.92, and an F1 score of 0.93. Additionally, it exhibited 
sensitivity and specificity of 0.92 and 0.94 respectively, with an AUC-ROC of 0.96 and an MCC of 
0.87. These results underscore the superior performance of the Quantum-Inspired Deep Learning model 
in accurately classifying leukemia subtypes, demonstrating its potential for clinical applications and 
highlighting the efficacy of quantum-inspired computing in genomic data analysis. 
 
5. Conclusion: 
The classification of leukemia subtypes is pivotal for effective treatment planning and patient 
management. In this study, we introduced a novel approach that integrates quantum-inspired deep 
learning with traditional machine learning techniques for improved leukemia subtype classification. 
Our Quantum-Inspired Deep Learning model demonstrated superior performance compared to 
conventional models, achieving higher accuracy, precision, recall, and F1 score on both the Leukemia 
and Microarray Quality Control (MAQC) datasets. Notably, it exhibited robust sensitivity, specificity, 
AUC-ROC, and Matthews Correlation Coefficient (MCC) values, signifying its efficacy in accurately 
distinguishing between leukemia subtypes. These findings suggest the potential of quantum-inspired 
computing in enhancing genomic data analysis and advancing precision medicine applications. Future 
research directions may explore the scalability and generalizability of quantum-inspired approaches 
across diverse cancer types and datasets, paving the way for personalized treatment strategies tailored 
to individual patients' genomic profiles. Overall, our study underscores the promise of quantum-
inspired deep learning in improving leukemia classification accuracy, with far-reaching implications 
for oncology and translational research endeavors. 
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