INHABITANTS OF ENDOPHYTIC PHOMASPP.
DOI:
https://doi.org/10.59367/r2cq6044Abstract
The fungal genus Phoma has been documented as exhibiting phytopathogenic properties, as well as functioning as saprophytes in soil. Additionally, this genus has been observed in various environments, including aquatic and aerial settings, marine environments, and as entomopathogens.The taxonomic classification Phoma pertains to pycnidia that bear single-celled, transparent conidia and are found on herbaceous stems. Phoma spp. had been classified with the class Coelomycetes because they have certain defining physical characteristics. Economically significant crop plants are frequently infected by fungi of the genus Phoma. Some Phoma species are host specific like Phoma caloplacae in Triticumaestivum and Phoma multiristrata have been found in weed plants T. procumbens. Some Phoma spp. found in more than plants like Phomaherbarum, Phoma glomarata, Phoma enpyrenahabitats in evergreen tree, mangrove tree, perennial trees, Herbaceous and shrubs also. Phoma spp. have the potential to act as opportunistic pathogens for humans, animals, and plants Many unique and natural products with diverse biological activity have been traced back to Phoma, which has gained many prominences. Phoma spp. has been found to produce a variety of novel secondary metabolites that exhibit antimicrobial, anti-inflammatory, bio-herbicidal, antiangiogenic, cytotoxic, and anti-HIVactivity.
References
Alberto, R. N., Costa, A. T., Polonio, J. C., Santos, M. S., Rhoden, S. A., Azevedo, J. L. D., & Pamphile, J. A. (2016). Extracellular enzymatic profiles and taxonomic identification of endophytic fungi isolated from four plant species. Genet Mol Res, 15(4), gmr15049016.
Arora, P., Wani, Z. A., Nalli, Y., Ali, A., & Riyaz-Ul-Hassan, S. (2016). Antimicrobial Potential of Thiodiketopiperazine Derivatives Produced by Phoma sp., an Endophyte of Glycyrrhiza glabra Linn. Microbial Ecology, 72, 802-812.
Bailey, K. L., Falk, S., Derby, J. A., Melzer, M., & Boland, G. J. (2013). The effect of fertilizers on the efficacy of the bioherbicide, Phoma macrostoma, to control dandelions in turfgrass. Biological Control, 65(1), 147-151.
Bettucci, L., & Saravay, M. (1993). Endophytic fungi of Eucalyptus globulus: a preliminary study. Mycological Research, 97(6), 679-682.
Bennett, A., Ponder, M. M., & Garcia-Diaz, J. (2018). Phoma infections: classification, potential food sources, and their clinical impact. Microorganisms, 6(3), 58.
Bezerra, J. D. P., Santos, M. G. S., Svedese, V. M., Lima, D. M. M., Fernandes, M. J. S., Paiva, L. M., & Souza-Motta, C. M. (2012). Richness of endophytic fungi isolated from Opuntia ficus-indica Mill.(Cactaceae) and preliminary screening for enzyme production. World Journal of Microbiology and Biotechnology, 28, 1989-1995.
Bezerra, J. D., Nascimento, C. C., Barbosa, R. D. N., da Silva, D. C., Svedese, V. M., Silva-Nogueira, E. B., ... & Souza-Motta, C. M. (2015). Endophytic fungi from medicinal plant Bauhinia forficata: Diversity and biotechnological potential. Brazilian Journal of Microbiology, 46, 49-57.
Bharathidasan, R., & Panneerselvam, A. (2011). Isolation and identification of endophytic fungi from Avicennia marina in Ramanathapuram District, Karankadu, Tamilnadu, India. European Journal of Experimental Biology, 1(3), 31-36.
Boerema, G. H. (1993). Contributions towards a monograph of Phoma (Coelomycetes)—II. Section peyronellaea. Persoonia-Molecular Phylogeny and Evolution of Fungi, 15(2), 197-221.
Boerema, G. H. (Ed.). (2004). Phoma identification manual: differentiation of specific and infra-specific taxa in culture. CABI.
Botella, L., & Diez, J. J. (2011). Phylogenic diversity of fungal endophytes in Spanish stands of Pinus halepensis. Fungal Diversity, 47, 9-18.
Brown, E. F., Bildsten, L., & Rutledge, R. E. (1998). Crustal heating and quiescent emission from transiently accreting neutron stars. The Astrophysical Journal, 504(2), L95.
Bukharina, I. L., Islamova, N. A., & Lebedeva, M. A. (2018). Species of fungi in the root system of woody plants in urban plantations. KnE Life Sciences, 49-55.
Chauhan, N. M., Gutama, A. D., & Aysa, A. (2019). Endophytic fungal diversity isolated from different agro-ecosystem of Enset (Ensete ventericosum) in Gedeo zone, SNNPRS, Ethiopia. BMC microbiology, 19, 1-10.
Chen, Z. M., Chen, H. P., Li, Y., Feng, T., & Liu, J. K. (2015). Cytochalasins from cultures of endophytic fungus Phoma multirostrata EA-12. The Journal of Antibiotics, 68(1), 23-26.
Chen, Y., Yang, W., Zou, G., Chen, S., Pang, J., & She, Z. (2019). Bioactive polyketides from the mangrove endophytic fungi Phoma sp. SYSU-SK-7. Fitoterapia, 139, 104369.
Chen, H. M., Wu, H. X., He, X. Y., Zhang, H. H., Miao, F., & Liang, Z. S. (2020). Promoting tanshinone synthesis of Salvia miltiorrhiza root by a seed endophytic fungus, Phoma herbarum D603. Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica, 45(1), 65-71.
Cosoveanu, A., Gimenez-Mariño, C., Cabrera, Y., Hernandez, G., & Cabrera, R. (2014). Endophytic fungi from grapevine cultivars in Canary Islands and their activity against phytopatogenic fungi. International Journal of Agriculture and Crop Sciences, 7(15), 1497.
Cosoveanu, A., Rodriguez Sabina, S., & Cabrera, R. (2018). Fungi as endophytes in Artemisia thuscula: Juxtaposed elements of diversity and phylogeny. Journal of Fungi, 4(1), 17.
Costa, I. P., Maia, L. C., & Cavalcanti, M. A. (2012). Diversity of leaf endophytic fungi in mangrove plants of northeast Brazil. Brazilian Journal of Microbiology, 43, 1165-1173.
Crous, P. W., Petrini, O., Marais, G. F., Pretorius, Z. A., & Rehder, F. (1995). Occurrence of fungal endophytes in cultivars of Triticum aestivum in South Africa. Mycoscience, 36(1), 105-111.
Cui, J. L., Guo, S. X., & Xiao, P. G. (2011). Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis. Journal of Zhejiang University. Science. B, 12(5), 385.
Das, N., & Chatterjee, T. (2023). Isolation and Identification of Endophytic Fungi of Rauwolfia Serpentina (L.) Benth. Ex Kurz by DNA Barcoding (No. 9900). EasyChair.
Deshmukh, S. K., Mishra, P. D., Kulkarni‐Almeida, A., Verekar, S., Sahoo, M. R., Periyasamy, G., ... & Vishwakarma, R. (2009). Anti‐inflammatory and anticancer activity of ergoflavin isolated from an endophytic fungus. Chemistry & biodiversity, 6(5), 784-789.
De Abreu, L. M., Almeida, A. R., Salgado, M., & Pfenning, L. H. (2010). Fungal endophytes associated with the mistletoe Phoradendron perrottettii and its host tree Tapirira guianensis. Mycological Progress, 9, 559-566.
De Oliveira Chagas, M. B., Dos Santos, I. P., da Silva, L. C. N., dos Santos Correia, M. T., de Araújo, J. M., da Silva Cavalcanti, M., & de Menezes Lima, V. L. (2017). Antimicrobial activity of cultivable endophytic fungi associated with Hancornia speciosa gomes bark. The Open Microbiology Journal, 11, 179.
De Vries, S., von Dahlen, J. K., Schnake, A., Ginschel, S., Schulz, B., & Rose, L. E. (2018). Broad-spectrum inhibition of Phytophthora infestans by fungal endophytes. FEMS Microbiology Ecology, 94(4), fiy037.
Douanla-Meli, C., Langer, E., & Mouafo, F. T. (2013). Fungal endophyte diversity and community patterns in healthy and yellowing leaves of Citrus limon. Fungal Ecology, 6(3), 212-222.
Du, W., Yao, Z., Li, J., Sun, C., Xia, J., Wang, B., ... & Ren, L. (2020). Diversity and antimicrobial activity of endophytic fungi isolated from Securinega suffruticosa in the Yellow River Delta. PloS one, 15(3), e0229589.
Ek-Ramos, M. J., Zhou, W., Valencia, C. U., Antwi, J. B., Kalns, L. L., Morgan, G. D., ... & Sword, G. A. (2013). Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum). PLoS One, 8(6), e66049.
El-Nagerabi, S. A., Elshafie, A. E., & Alkhanjari, S. S. (2014). Endophytic fungi associated with endogenous Boswellia sacra. Biodiversitas Journal of Biological Diversity, 15(1).
EL-NAGERABI, S. A., Elshafie, A. E., & Alkhanjari, S. S. (2013). Endophytic fungi associated with Ziziphus species and new records from mountainous area of Oman. Biodiversitas Journal of Biological Diversity, 14(1).
Fernandes, M. D. R. V., Silva, T. A. C., Pfenning, L. H., Costa-Neto, C. M. D., Heinrich, T. A., Alencar, S. M. D., ... & Ikegaki, M. (2009). Biological activities of the fermentation extract of the endophytic fungus Alternaria alternata isolated from Coffea arabica L. Brazilian journal of pharmaceutical sciences, 45, 677-685.
Fernandes, E. G., Pereira, O. L., da Silva, C. C., Bento, C. B. P., & de Queiroz, M. V. (2015). Diversity of endophytic fungi in Glycine max. Microbiological Research, 181, 84-92.
Fisher, P. J., Petrini, O., Petrini, L. E., & Sutton, B. C. (1994). Fungal endophytes from the leaves and twigs of Quercus ilex L. from England, Majorca and Switzerland. New Phytologist, 127(1), 133-137.
Gama, D. D. S., Santos, Í. A. F. M., Abreu, L. M. D., Medeiros, F. H. V. D., Duarte, W. F., & Cardoso, P. G. (2019). Endophytic fungi from Brachiaria grasses in Brazil and preliminary screening of Sclerotinia sclerotiorum antagonists. Scientia Agricola, 77.
García, A., Rhoden, S. A., Rubin Filho, C. J., Nakamura, C. V., & Pamphile, J. A. (2012). Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L. and their localization by scanning electron microscopy. Biological Research, 45(2), 139-148.
García, E., Alonso, Á., Platas, G., & Sacristán, S. (2013). The endophytic mycobiota of Arabidopsis thaliana. Fungal Diversity, 60, 71-89.
Gazis, R., & Chaverri, P. (2010). Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. fungal ecology, 3(3), 240-254.
Garibaldi, A., Gilardi, G., Bertetti, D., & Gullino, M. L. (2007). First report of leaf spot and root rot caused by Phoma betae on Beta vulgaris subsp. vulgaris (Garden beet Group) in Italy. Plant Disease, 91(11), 1515-1515.
Ghimire, S. R., Charlton, N. D., Bell, J. D., Krishnamurthy, Y. L., & Craven, K. D. (2011). Biodiversity of fungal endophyte communities inhabiting switchgrass (Panicum virgatum L.) growing in the native tallgrass prairie of northern Oklahoma. Fungal Diversity, 47, 19-27.
González, V., & Tello, M. L. (2011). The endophytic mycota associated with V itis vinifera in central Spain. Fungal diversity, 47(1), 29-42.
Gupta, S., Kaul, S., Singh, B., Vishwakarma, R. A., & Dhar, M. K. (2016). Production of gentisyl alcohol from Phoma herbarum endophytic in Curcuma longa L. and its antagonistic activity towards leaf spot pathogen Colletotrichum gloeosporioides. Applied biochemistry and biotechnology, 180, 1093-1109.
Guo, L. D., Huang, G. R., & Wang, Y. (2008). Seasonal and tissue age influences on endophytic fungi of Pinus tabulaeformis (Pinaceae) in the Dongling Mountains, Beijing. Journal of integrative plant biology, 50(8), 997-1003.
Hamzah, T. N. T., Lee, S. Y., Hidayat, A., Terhem, R., Faridah-Hanum, I., & Mohamed, R. (2018). Diversity and characterization of endophytic fungi isolated from the tropical mangrove species, Rhizophora mucronata, and identification of potential antagonists against the soil-borne fungus, Fusarium solani. Frontiers in microbiology, 9, 1707.
Hemamalini, V., Kumar, D. M., Rebecca, A. I. N., Srimathi, S., Muthumary, J., & Kalaichelvan, P. (2015). Isolation and characterization of taxol producing endophytic Phoma sp. from Calotropis gigantea and its anti-proliferative studies. J. Acad. Ind. Res, 3, 645-649.
Hussain, H., Kock, I., Al-Harrasi, A., Al-Rawahi, A., Abbas, G., Green, I. R., ... & Krohn, K. (2014). Antimicrobial chemical constituents from endophytic fungus Phoma sp. Asian Pacific Journal of Tropical Medicine, 7(9), 699-702.
Iqbal, S., & Chohan, J. S. (1984). Phoma jolyana, a new pathogen on neem (Azadirachta indica). Indian Forester, 110(10), 1058-1060.
Jayatilake, P. L., & Munasinghe, H. (2020). Antimicrobial activity of cultivable endophytic and rhizosphere fungi associated with “mile-a-minute,” Mikania cordata (Asteraceae). BioMed Research International, 2020.
Jiaojiao, S., Wattanachai, P., & Kasem, S. (2016). Isolation and identification of endophytic fungi from 10 species palm trees. Journal of Agricultural Technology, 12(2), 349-363.
Junker, C., Draeger, S., & Schulz, B. (2012). A fine line–endophytes or pathogens in Arabidopsis thaliana. Fungal Ecology, 5(6), 657-662.
Juyal, P., Shrivastava, V., & Mathur, A. (2017). Antimicrobial activity of Endophytes from aerial and non aerial parts of Calotropis procera against Pathogenic microbes. Int J Scient Res Pub, 7(7), 590-596.
Kandasamy, P., Manogaran, S., Dhakshinamoorthy, M., & Kannan, K. P. (2015). Evaluation of antioxidant and antibacterial activities of endophytic fungi isolated from Bauhinia racemosa Lam and Phyllanthus amarus Schum and Thonn. J Chem Pharm Res, 7(9), 366-379.
Kannan, K. P., Abdul Basheed, M. I., Kannadhasan, S., Pondurai, S., & Dhakshinamoorthy, M. (2017). Mycoendophytes isolated from Mimusops elengi. L-A first report. International Biological and Biomedical Journal, 3(1), 25-29.
Khan, R., Shahzad, S., Choudhary, M. I., Khan, S. A., & Ahmad, A. (2007). Biodiversity of the endophytic fungi isolated from Calotropis procera (Ait.) R. Br. Pakistan Journal of Botany, 39(6), 2233-2239.
Khan, A. L., Waqas, M., Hussain, J., Al-Harrasi, A., Al-Rawahi, A., Al-Hosni, K., ... & Lee, I. J. (2014). Endophytes Aspergillus caespitosus LK12 and Phoma sp. LK13 of Moringa peregrina produce gibberellins and improve rice plant growth. Journal of Plant Interactions, 9(1), 731-737.
Khan, A. L., Al-Harrasi, A., Al-Rawahi, A., Al-Farsi, Z., Al-Mamari, A., Waqas, M., ... & Lee, I. J. (2016). Endophytic fungi from frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PloS one, 11(6), e0158207.
Kedar, A., Rathod, D., Yadav, A., Agarkar, G., & Rai, M. (2014). Endophytic Phoma sp. isolated from medicinal plants promote the growth of Zea mays. Nusantara Bioscience, 6(2).
Khiralla, A., Mohamed, I. E., Tzanova, T., Schohn, H., Slezack-Deschaumes, S., Hehn, A., ... & Laurain-Mattar, D. (2016). Endophytic fungi associated with Sudanese medicinal plants show cytotoxic and antibiotic potential. FEMS microbiology letters, 363(11).
Kim, J. W., Ko, W., Kim, E., Kim, G. S., Hwang, G. J., Son, S., ... & Ahn, J. S. (2018). Anti-inflammatory phomalichenones from an endolichenic fungus Phoma sp. The Journal of Antibiotics, 71(8), 753-756.
Kumar, S., Upadhyay, R., Aharwal, R. P., & Sandhu, S. S. (2016). Antibacterial activity of some isolated endophytic fungi from Menthe viridis. Int J Appl Biol Pharm Technol, 7, 239-248.
Kumaran, R. S., Choi, Y. K., Lee, S., Jeon, H. J., Jung, H., & Kim, H. J. (2012). Isolation of taxol, an anticancer drug produced by the endophytic fungus, Phoma betae. African Journal of Biotechnology, 11(4), 950-960.
Krishnamurthy, Y. L., Naik, S. B., & Jayaram, S. (2008). Fungal communities in herbaceous medicinal plants from the Malnad region, Southern India. Microbes and environments, 23(1), 24-28.
Kwong-Chung, K.J.; Bennett, J.E. (1992). Medical Mycology; Lea & Febiger: Philadelphia, PA, USA, pp. 661–662, ISBN 0812114639
Larrán, S., Perello, A., Simón, M. R., & Moreno, V. (2002). Isolation and analysis of endophytic microorganisms in wheat (Triticum aestivum L.) leaves. World Journal of Microbiology and Biotechnology, 18, 683-686.
Li, H. T., Liu, T., Yang, R., Xie, F., Yang, Z., Yang, Y., ... & Ding, Z. T. (2020). Phomretones A–F, C 12 polyketides from the co-cultivation of Phoma sp. YUD17001 and Armillaria sp. RSC advances, 10(31), 18384-18389.
Li, X., Zhai, X., Shu, Z., Dong, R., Ming, Q., Qin, L., & Zheng, C. (2016). Phoma glomerata D14: An endophytic fungus from Salvia miltiorrhiza that produces salvianolic acid C. Current Microbiology, 73, 31-37.
Liu, S. S., Jiang, J. X., Huang, R., Wang, Y. T., Jiang, B. G., Zheng, K. X., & Wu, S. H. (2019). A new antiviral 14-nordrimane sesquiterpenoid from an endophytic fungus Phoma sp. Phytochemistry Letters, 29, 75-78.
Luiz H, R., Nurhayat, T., Zhiqiang, P., Ulrich R, B., James J, B., Natasha M, A., ... & Rita M, M. (2012). Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench. American Journal of Plant Sciences, 2012.
Loro, M., Valero-Jiménez, C. A., Nozawa, S., & Márquez, L. M. (2012). Diversity and composition of fungal endophytes in semiarid Northwest Venezuela. Journal of Arid Environments, 85, 46-55.
Lv, R., Zheng, L., Zhu, Z., Pan, L., Huang, J., & Hsiang, T. (2011). First report of stem blight of Eleocharis dulcis caused by Phoma bellidis in China. Plant Disease, 95(9), 1190-1190.
Macia-Vicente, J. G., Jansson, H. B., Mendgen, K., & Lopez-Llorca, L. V. (2008). Colonization of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces graminis var. tritici. Canadian Journal of Microbiology, 54(8), 600-609.
Maheswari, S., & Rajagopal, K. (2013). Biodiversity of endophytic fungi in Kigelia pinnata during two different seasons. Current Science, 515-518.
Masumi, S., Mirzaei, S., Kalvandi, R., & Zafari, D. (2014). Asparaginase and amylase activity of thyme endophytic fungi. Journal of Crop Protection, 3(5), 655-662.
Materatski, P., Varanda, C., Carvalho, T., Dias, A. B., Campos, M. D., Rei, F., & do Rosário Félix, M. (2019). Spatial and temporal variation of fungal endophytic richness and diversity associated to the phyllosphere of olive cultivars. Fungal biology, 123(1), 66-76.
Moricca, S., Ginetti, B., & Ragazzi, A. (2012). Species-and organ-specificity in endophytes colonizing healthy and declining Mediterranean oaks. Phytopathologia Mediterranea, 587-598.
Myrchiang, P., Dkhar, M. S., & Devi, H. R. (2014). Studies on endophytic fungi associated with medicinally important aromatic plant Artemisia nilagirica (CB Clarke) Pamp. and their antagonistic activity against Phytophthora infestans. J. Adv. Lab. Res. Biol, 5, 112-119.
Nalli, Y., Arora, P., Khan, S., Malik, F., Riyaz-Ul-Hassan, S., Gupta, V., & Ali, A. (2019). Isolation, structural modification of macrophin from endophytic fungus Phoma macrostoma and their cytotoxic potential. Medicinal Chemistry Research, 28, 260-266.
Newsham, K. K. (1994). First record of intracellular sporulation by a coelomycete fungus. Mycological Research, 98(12), 1390-1392.
Novak Babič, M., Gunde-Cimerman, N., Vargha, M., Tischner, Z., Magyar, D., Veríssimo, C., ... & Brandão, J. (2017). Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. International journal of environmental research and public health, 14(6), 636.
Novas, M. V., & Carmarán, C. C. (2008). Studies on diversity of foliar fungal endophytes of naturalised trees from Argentina, with a description of Haplotrichum minutissimum sp. nov. Flora-Morphology, Distribution, Functional Ecology of Plants, 203(7), 610-616.
Oliveira, R. J. V., Souza, R. G., Lima, T. E. F., & Cavalcanti, M. A. Q. (2014). Endophytic fungal diversity in coffee leaves (Coffea arabica) cultivated using organic and conventional crop management systems. Mycosphere, 5(4), 523-530.
Orlandelli, R. C., Alberto, R. N., Rubin Filho, C. J., & Pamphile, J. A. (2012). Diversity of endophytic fungal community associated with Piper hispidum (Piperaceae) leaves. Genet Mol Res, 11(2), 1575-1585.
Osterhage, C., König, G. M., Jones, P. G., & Wright, A. D. (2002). 5-Hydroxyramulosin, a new natural product produced by Phoma tropica, a marine-derived fungus isolated from the alga Fucus spiralis. Planta medica, 68(11), 1052-1054.
Parismita, S., Manoj, K., Highland, K., Ruth, L., & Richa, R. (2016). Endophytic fungi associated with the medicinally important aromatic plant Artemisia nilagirica (Clarke) Pamp. and antimicrobial activity of selected endophytic fungi against Rhizoctonia solani. Asian Journal of Biological and Life Science, 5(2).
Park, S. U., Lim, H. S., Park, K. C., Park, Y. H., & Bae, H. (2012). Fungal endophytes from three cultivars of Panax ginseng Meyer cultivated in Korea. Journal of ginseng research, 36(1), 107.
Park, Y. H., Chung, J. Y., Ahn, D. J., Kwon, T. R., Lee, S. K., Bae, I., ... & Bae, H. (2015). Screening and characterization of endophytic fungi of Panax ginseng Meyer for biocontrol activity against ginseng pathogens. Biological Control, 91, 71-81.
Paul, N. C., Kim, W. K., Woo, S. K., Park, M. S., & Yu, S. H. (2006). Diversity of endophytic fungi associated with Taraxacum coreanum and their antifungal activity. Mycobiology, 34(4), 185-190.
Pharamat, T., Palaga, T., Piapukiew, J., Whalley, A. J., & Sihanonth, P. (2013). Antimicrobial and anticancer activities of endophytic fungi from Mitrajyna javanica Koord and Val. Afr J Microbiol Res, 7(49), 5565-5572.
Poveda, J., Zabalgogeazcoa, I., Soengas, P., Rodríguez, V. M., Cartea, M. E., Abilleira, R., & Velasco, P. (2020). Brassica oleracea var. acephala (kale) improvement by biological activity of root endophytic fungi. Scientific Reports, 10(1), 20224.
Purmale, L., Apine, I., Nikolajewa, V., Grantina, L., Verkley, G., & Tomsone, S. (2012). Endophytic fungi in evergreen rhododendron cultivated in vitro and in vivo. Environmental and Experimental Biology, 10, 1-7.
RADIASTUTI, N., SUSILOWATI, D. N., & BAHALWAN, H. A. (2019). Phylogenetic study of endophytic fungi associated with Centella asiatica from Bengkulu and Malaysian accessions based on the ITS rDNA sequence. Biodiversitas Journal of Biological Diversity, 20(5).
Ragazzi, A., Moricca, S., Capretti, P., & Dellavalle, I. (1999). Endophytic presence of Discula quercina on declining Quercus cerris. Journal of Phytopathology, 147(7‐8), 437-440.
Rai, M. K., Tiwari, V. V., Irinyi, L., & Kövics, G. J. (2014). Advances in taxonomy of genus Phoma: polyphyletic nature and role of phenotypic traits and molecular systematics. Indian journal of microbiology, 54, 123-128.
Rajak, R. C., & Rai, M. K. (1983). Effect of different factors on the morphology and cultural characters of 18-species and 5-varieties of Phoma. I. Effect of different media. Bibliotheca Mycologica, 91, 301-317.
Rajagopal, K., Mahendran, T. S., & Selvakumar, S. (2008). Preliminary studies on the diversityof the fungal endophytes in few Ficus Species. Indian Journal of Applied Microbiology, 8(1), 11-14.
Rivera-Orduña, F. N., Suarez-Sanchez, R. A., Flores-Bustamante, Z. R., Gracida-Rodriguez, J. N., & Flores-Cotera, L. B. (2011). Diversity of endophytic fungi of Taxus globosa (Mexican yew). Fungal Diversity, 47, 65-74.
Sánchez Márquez, S., Bills, G. F., Domínguez Acuña, L., & Zabalgogeazcoa, I. (2010). Endophytic mycobiota of leaves and roots of the grass Holcus lanatus. Fungal Diversity, 41, 115-123.
Sandhu, S. S., Kumar, S., & Aharwal, R. P. (2014). Isolation and identification of endophytic fungi from Ricinus communis Linn. and their antibacterial activity. Int. J. Res. Pharm. Chem, 4(3), 611-618.
Sánchez Márquez, S., Bills, G. F., Domínguez Acuña, L., & Zabalgogeazcoa, I. (2010). Endophytic mycobiota of leaves and roots of the grass Holcus lanatus. Fungal Diversity, 41, 115-123.
SCHULZ, B., GUSKE, S., & DAMMANN, U. (1998). Endophyte-host interactions. II. Defining symbiosis of the endophyte-host interaction. Symbiosis.
Selim, K. A., Elkhateeb, W. A., Tawila, A. M., El-Beih, A. A., Abdel-Rahman, T. M., El-Diwany, A. I., & Ahmed, E. F. (2018). Antiviral and antioxidant potential of fungal endophytes of Egyptian medicinal plants. Fermentation, 4(3), 49.
Selvanathan, S., Indrakumar, I., & Johnpaul, M. (2011). Biodiversity of the endophytic fungi isolated from Calotropis gigantea (L.) R. Br. Recent Research in Science and Technology, 3(4).
Sim, J. H., Khoo, C. H., Lee, L. H., & Cheah, Y. K. (2010). Molecular diversity of fungal endophytes isolated from Garcinia mangostana and Garcinia parvifolia. J Microbiol Biotechnol, 20(4), 651-658.
Singh, G., Katoch, A., Razak, M., Kitchlu, S., Goswami, A., & Katoch, M. (2017). Bioactive and biocontrol potential of endophytic fungi associated with Brugmansia aurea Lagerh. FEMS Microbiology Letters, 364(21).
Sinneto, S., Alonso, R., Tiscornia, S., & Bettucci, I. (2005). Fungal community of Eucalyptus globulus and Eucalyptus maidenii stems in Uruguay.
Smith, H., Wingfield, M. J., & Petrini, O. (1996). Botryosphaeria dothidea endophytic in Eucalyptus grandis and Eucalyptus nitens in South Africa. Forest ecology and management, 89(1-3), 189-195.
Song, J., Wattanachai, P., & Kasem, S. (2015). Biological activity of endophytic fungi associated with palm trees. Journal of Agricultural Technology, 11(2), 567-579.
Srivastava, A. P. A. R. N. A., & Anandrao, R. K. (2015). Antimicrobial potential of fungal endophytes isolated from leaves of Prosopis juliflora (SW.) DC. an important weed. International Journal of Pharmacy and Pharmaceutical Sciences, 7(12), 128-136.
Strobel, G., Singh, S. K., Riyaz-Ul-Hassan, S., Mitchell, A. M., Geary, B., & Sears, J. (2011). An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS microbiology letters, 320(2), 87-94.
Sun, J., Guo, L., Zang, W., Ping, W., & Chi, D. (2008). Diversity and ecological distribution of endophytic fungi associated with medicinal plants. Science in China Series C: Life Sciences, 51(8), 751-759.
Sun, X., Guo, L. D., & Hyde, K. D. (2011). Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal diversity, 47, 85-95.
Sun, Y., Wang, Q., Lu, X., Okane, I., & Kakishima, M. (2012). Endophytic fungal community in stems and leaves of plants from desert areas in China. Mycological Progress, 11, 781-790.
Suryan, L., Aruna, A., & Namasivayam, S. (2016). Screening of antibacterial activity of endophytic fungi Phoma europhyrena against human pathogenic bacteria. Research Journal of Pharmacy and Technology, 9(4), 437-439.
Szűcs, Z., Plaszkó, T., Cziáky, Z., Kiss-Szikszai, A., Emri, T., Bertóti, R., ... & Gonda, S. (2018). Endophytic fungi from the roots of horseradish (Armoracia rusticana) and their interactions with the defensive metabolites of the glucosinolate-myrosinase-isothiocyanate system. BMC plant biology, 18(1), 1-15.
Tan, X. M., Li, L. Y., Sun, L. Y., Sun, B. D., Niu, S. B., Wang, M. H., ... & Ding, G. (2018)a. Spiciferone analogs from an endophytic fungus Phoma betae collected from desert plants in West China. The Journal of Antibiotics, 71(6), 613-617.
Tan, X. M., Zhou, Y. Q., Zhou, X. L., Xia, X. H., Wei, Y., He, L. L., ... & Yu, L. Y. (2018)b. Diversity and bioactive potential of culturable fungal endophytes of Dysosma versipellis; a rare medicinal plant endemic to China. Scientific Reports, 8(1), 5929.
Taylor, J. E., Hyde, K. D., & Jones, E. B. G. (1999). Endophytic fungi associated with the temperate palm, Trachycarpus fortunei, within and outside its natural geographic range. The New Phytologist, 142(2), 335-346.
Teimoori-Boghsani, Y., Ganjeali, A., Cernava, T., Müller, H., Asili, J., & Berg, G. (2020). Endophytic fungi of native Salvia abrotanoides plants reveal high taxonomic diversity and unique profiles of secondary metabolites. Frontiers in microbiology, 10, 3013.
Toghueo, R. M. K., Zabalgogeazcoa, I., de Aldana, B. V., & Boyom, F. F. (2017). Enzymatic activity of endophytic fungi from the medicinal plants Terminalia catappa, Terminalia mantaly and Cananga odorata. South African Journal of Botany, 109, 146-153.
Vieira, P. D. D. S., Motta, C. M. D. S., Lima, D., Torres, J. B., Quecine, M. C., Azevedo, J. L., & Oliveira, N. T. D. (2011). Endophytic fungi associated with transgenic and non-transgenic cotton. Mycology, 2(2), 91-97.
Vieira, M. L., Hughes, A. F., Gil, V. B., Vaz, A. B., Alves, T. M., Zani, C. L., ... & Rosa, L. H. (2012). Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell.(Solanaceae). Canadian journal of microbiology, 58(1), 54-66.
Vujanovic, V., & Brisson, J. (2002). A comparative study of endophytic mycobiota in leaves of Acer saccharum in eastern North America. Mycological Progress, 1(2), 147-154.
Wang, L. W., Xu, B. G., Wang, J. Y., Su, Z. Z., Lin, F. C., Zhang, C. L., & Kubicek, C. P. (2012). Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. Applied microbiology and biotechnology, 93, 1231-1239.
Wang, W. X., Zheng, M. J., Li, J., Feng, T., Li, Z. H., Huang, R., ... & Liu, J. K. (2019). Cytotoxic polyketides from endophytic fungus Phoma bellidis harbored in Ttricyrtis maculate. Phytochemistry Letters, 29, 41-46.
Wati, M. S., & Hadiwiyono, A. Y. (2019). Antagonism of Endophytic Fungi Isolates Artemisia Annua Towards Rhizoctonia Solani, Causal Agent Of Rice Sheath Blight.International Journal of Innovations in Engineering and Technology, 14(1), 75-79.
Waqas, M., Khan, A. L., Kamran, M., Hamayun, M., Kang, S. M., Kim, Y. H., & Lee, I. J. (2012). Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules, 17(9), 10754-10773.
Weber, R. W., Stenger, E., Meffert, A., & Matthias, H. A. H. N. (2004). Brefeldin A production by Phoma medicaginis in dead pre-colonized plant tissue: a strategy for habitat conquest?. Mycological research, 108(6), 662-671.
Wijeratne, E. K., He, H., Franzblau, S. G., Hoffman, A. M., & Gunatilaka, A. L. (2013). Phomapyrrolidones A–C, antitubercular alkaloids from the endophytic fungus Phoma sp. NRRL 46751. Journal of Natural Products, 76(10), 1860-1865.
Xiong, Z. Q., Yang, Y. Y., Zhao, N., & Wang, Y. (2013). Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. BMC microbiology, 13(1), 1-10.
Yang, X., Strobel, G., Stierle, A., Hess, W. M., Lee, J., & Clardy, J. (1994). A fungal endophyte-tree relationship: Phoma sp. in Taxus wallachiana. Plant Science, 102(1), 1-9.
Zaferanloo, B., Pepper, S. A., Coulthard, S. A., Redfern, C. P., & Palombo, E. A. (2018). Metabolites of endophytic fungi from Australian native plants as potential anticancer agents. FEMS microbiology letters, 365(9), fny078.
Zaiyou, J., Li, M., & Xiqiao, H. (2017). An endophytic fungus efficiently producing paclitaxel isolated from Taxus wallichiana var. mairei. Medicine, 96(27).
Zakaria, L., & Aziz, W. N. W. (2018). Molecular identification of endophytic fungi from banana leaves (Musa spp.). Tropical life sciences research, 29(2), 201.
Zheng, Y. K., Miao, C. P., Chen, H. H., Huang, F. F., Xia, Y. M., Chen, Y. W., & Zhao, L. X. (2017). Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease. Journal of Ginseng Research, 41(3), 353-360.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 International Journal of Futuristic Innovation in Engineering, Science and Technology (IJFIEST)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.