REMOVAL OF PHARMACEUTICAL POLLUTANTS FROM SURFACE WATER BY DIFFERENT ADSORBENTS: A REVIEW

Authors

  • Renu Verma Bharti Vishwavidayalya Durg, Chhattisgarh, India

Abstract

Micropollutants, additionally knownas rising contaminants,consist of a huge team of artificial and herbal substances, such as pharmaceuticals, private care products, steroid hormones, and agrochemicals. Currently, the monitoring of residual prescribed drugs in the surroundings has been highlighted due to the reality that many of these elements are located in wastewater cure plant life effluents and floor waters, in concentrations ranging from ng to L-1 mg L-1. Most of these compounds are discharged into the surroundings constantly via home sewage cure systems. In the current work, it is introduced an overview of water air pollution by way of these pollutants, as nicely as a assessment of the current literature about the use of different adsorbents for the elimination of the primary prescription drugs determined in floor water, focusing on municipal and agro industrial wastes as precursors. It was once feasible to study quite a few examples of excessive adsorption capacities of these compounds with such materials, on the other hand different elements need to be regarded in order to consider the actual applicability in water and wastewater treatment, such as competition, recyclability and manufacturing cost.

References

S. Mompelat, B. Le Bot, O. Thomas, Occurrence and fate of pharmaceutical products and by-products from resource to drinking water, Environ. Int., 35 (2009) 803–814.

B.H. Sorensen, S.N. Nielsen, P.F. Lanzky, F. Ingerslev, H.C. Holten Lutzhoft, S.E. Jørgensen, Occurrence, fate and effects of pharmaceutical substances in the environment—A review, Chemosphere, 36 (1998) 357–393.

R. Velagaleti, Behavior of pharmaceutical drugs (human and animal health) in the environment, Drug Inform. J., 31 (1997) 715–722.

S.E. Jorgensen, B.H. Sorensen, Drugs in the environment, Chemosphere, 40 (2000) 691–699.

M. Petrovic, S. Gonzalez, D. Barcelo, Analysis and removal of emerging contaminants in wastewater and drinking water, Trends Anal. Chem., 22 (2003) 685–696.

E. Zuccato, S. Castiglioni, R. Fanelli, G. Reitano, R. Bagnati, C. Chiabrando, F. Pomati, C. Rossetti, D. Calamari, Pharmaceuticals in the environment in Italy: causes, occurrence, effects and control, Environ Sci. Pollut., 13 (2006) 15–21.

S. D. Kim, J. Cho, In. S. Kim, B.J. Vanderford, S.A. Snyder, Occurrence and removal of pharmaceuticals and endocrine disruptors in south Korean surface, drinking and waste waters, Water Res., 41 (2007) 1013– 1021.

Larsen, T. A.; Lienert, J.; Joss, A.; Siegrist, H. How to avoid pharmaceuticals in the aquatic Environment. J. Biotechnol. 2004, 113, 295−304.

Grassi, M.; Kaykioglu, G.; Belgiorno, V.; Lofrano, G., Removal of Emerging Contaminants from Water and Wastewater by Adsorption Process. In Emerging Compounds Removal from Wastewater; Lofrano, G., Ed.; Springer Netherlands, 2012; pp 15−37.

Tong, D. S.; Zhou, C. H.; Lu, Y.; Yu, H.; Zhang, G. F.; Yu, W. H. Adsorption of Acid Red G dye on octadecyl trimethylammonium montmorillonite. Appl. Clay Sci. 2010, 50, 427−431.

Crini, G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 2006, 97, 1061−1085.

Derbyshire, F.; Jagtoyen, M.; Andrews, R.; Rao, A.; Martin- Gullón, I.; Grulke, E. A.; Radovic, L. Carbon Materials in Environmental Applications. Chem. Phys. Carbon 2001, 27, 1−66.

Sotelo, J. L.; Ovejero, G.; Rodríguez, A.; Álvarez, S.; García, J. Study of Natural Clay Adsorbent Sepiolite for the Removal of Caffeine from Aqueous Solutions: Batch and Fixed-Bed Column Operation. Water, Air, Soil Pollut. 2013, 224, 1466.

Babel, S.; Kurniawan, T. A. Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard. Mater. 2003, 97, 219−243.

Homem, V.; Santos, L. Degradation and removal methods of antibiotics from aqueous matrices − A review. J. Environ. Manage. 2011, 92, 2304−2347.

Ahmed, M. J. Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: Review. J. Environ. Manage. 2017, 190, 274−282.

Ahmed, M. J. Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review. Environ. Toxicol. Pharmacol. 2017, 50, 1−10.

Ahmed, M. B.; Zhou, J. L.; Ngo, H. H.; Guo, W. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total Environ. 2015, 532, 112−26.

Ahmaruzzaman, M., 2008. Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv. Colloid Interface Sci. 143, 48e67. 2008.07.002.

Ali, I., Asim, M., Khan, T.A., 2012. Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag. 113, 170e183. 2012.08.028.

Reddy, D.H.K., Seshaiah, K., Reddy, A.V.R., Rao, M.M., Wang, M.C., 2010. Biosorption of Pb2þ from aqueous solutions by Moringa oleifera bark: equilibrium and kinetic studies. J. Hazard Mater. 2009.09.128.

B. Tiwari, B. Sellamuthu, Y. Ouarda, P. Drogui, R.D. Tyagi, G. Buelna, Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach, Bioresour. Technol. 224 (2017) 1–12.

L.F. Stadlmair, T. Letzel, J.E. Drewes, J. Grassmann, Enzymes in removal of pharmaceuticals from wastewater: A critical review of challenges, applications and screening methods for their selection, Chemosphere 205 (2018) 649–661.

R. Changotra, H. Rajput, J.P. Guin, L. Varshney, A. Dhir, Hybrid coagulation, gamma irradiation and biological treatment of real pharmaceutical wastewater, Chem. Eng. J. 370 (2019) 595–605.

Z. Shamsollahi, A. Partovinia, Recent advances on pollutants removal by rice husk as a bio-based adsorbent: A critical review, J. Environ. Manage. 246 (2019) 314–323.

I.T. Carvalho, L. Santos, Antibiotics in the aquatic environments: A review of the European scenario, Environ. Int. 94 (2016) 736–757.

Y. Ben, C. Fu, M. Hu, L. Liu, M.H. Wong, C. Zheng, Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review, Environ. Res. 169 (2019) 483–493.

M. Zhang, B. Gao, Removal of arsenic, methylene blue, and phosphate by biochar/ AlOOH nanocomposite, Chem. Eng. J. 226 (2013) 286–292.

A. Kaur, A. Umar, S.K. Kansal, Heterogeneous photocatalytic studies of analgesic and non-steroidal anti-inflammatory drugs, Appl. Catal. General 510 (2016)

Putschew, A., Jekel, M., 2007. Analysis, Fate and Removal of Pharmaceuticals in the Water Cycle, Comprehensive Analytical Chemistry. (07)50013-9.

Binnie, C.; Kimber, M.; Smethurst, G. Basic Water Treatment. Thomas Telford 2002, 291.

Crini, G.; Badot, P. Sorption Processes and Pollution: Conventional and Non-conventional Sorbents for Pollutant Removal from Wastewaters; Presses Univ. Franche-Comté: 2010; p 489.

Suarez, S.; Lema, J. M.; Omil, F. Pre-treatment of hospital wastewater by coagulation−flocculation and flotation. Bioresour. Technol. 2009, 100, 2138−2146.

Grassi, M.; Kaykioglu, G.; Belgiorno, V.; Lofrano, G., Removal of Emerging Contaminants from Water and Wastewater by Adsorption Process. In Emerging Compounds Removal from Wastewater; Lofrano, G., Ed.; Springer Netherlands, 2012; pp 15−37.

Westerhoff, P.; Yoon, Y.; Snyder, S.; Wert, E. Fate of Endocrine- Disruptor, Pharmaceutical, and Personal Care Product Chemicals during Simulated Drinking Water Treatment Processes. Environ. Sci. Technol. 2005, 39, 6649−6663.

M.J. Ahmed, Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review, Environ. Toxicol. Pharmacol. 50 (2017) 1–10.

K.L. Tan, B.H. Hameed, Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions, J. Taiwan Inst. Chem. Eng. 74 (2017) 25–48.

S. Lagergren, Kungliga svenska vetenskapsakademiens, Handlingar 24 (1898) 1–39

M.-F. Li, Y.-G. Liu, G.-M. Zeng, N. Liu, S.-B. Liu, Graphene and graphene-based nanocomposites used for antibiotics removal in water treatment: A review, Chemosphere 226 (2019) 360–380.

Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J. 70 (1998) 115–124.

M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, M.A.H. Johir, K. Sornalingam, Singleand competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water, Chem. Eng. J. 311 (2017) 348–358.

W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanitary Eng. Div. 89 (1963) 31–60.

F. Marrakchi, M.J. Ahmed, W.A. Khanday, M. Asif, B.H. Hameed, Mesoporousactivated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue, Int. J. Biol. Macromol. 98 (2017) 233–239.

A. Bangham, M. Standish, J. Watkins, G. Weissmann, The diffusion of ions from a phospholipid model membrane system, in: Symposium on Biophysics and Physiology of Biological Transport, Springer, 1967, pp. 183–187.

S. Roginsky, Y.B. Zeldovich, The catalytic oxidation of carbon monoxide on manganese dioxide, Acta Phys. Chem. USSR 1 (1934) 2019.

D.P. Facchi, A.L. Cazetta, E.A. Canesin, V.C. Almeida, E.G. Bonafe, M.J. Kipper, A.F. Martins, New magnetic chitosan/alginate/Fe3O4SiO2 hydrogel composites applied for removal of Pb(II) ions from aqueous systems, Chem. Eng. J. 337 (2018) 595–608.

J.B. Neris, F.H. Martinez Luzardo, E.G. Paranhos da Silva, F.G. Velasco, Evaluation of adsorption processes of metal ions in multi-element aqueous systems by lignocellulosic adsorbents applying different isotherms: A critical review, Chem. Eng. J. 357 (2019) 404–420.

M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, M.A.H. Johir, D. Belhaj, Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment, Bioresour. Technol. 238 (2017) 306–312.

I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc. 38 (1916) 2221–2295.

H. Freundlich, Colloid & Capillary Chemistry, Methuen & Co. Ltd. 1926.

S.M. Silva, K.A. Sampaio, R. Ceriani, R. Verhe, C. Stevens, W. De Greyt, A.J.A. Meirelles, Adsorption of carotenes and phosphorus from palm oil onto acid activated bleaching earth: Equilibrium, kinetics and thermodynamics, J. Food Eng. 118 (2013) 341–349.

K.S.D. Premarathna, A.U. Rajapaksha, N. Adassoriya, B. Sarkar, N.M.S. Sirimuthu, A. Cooray, Y.S. Ok, M. Vithanage, Clay-biochar composites for sorptive removal of tetracycline antibiotic in aqueous media, J. Environ. Manage. 238 (2019) 315–322.

A. Ashiq, N.M. Adassooriya, B. Sarkar, A.U. Rajapaksha, Y.S. Ok, M. Vithanage, Municipal solid waste biochar-bentonite composite for the removal of antibiotic ciprofloxacin from aqueous media, J. Environ. Manage. 236 (2019) 428–435.

[54] Hill, C. G. An introduction to chemical engineering kinetics and reactor design; 1st ed.; John Wiley & Sons: USA, 1977.

Tran, H. N.; You, S.-J.; Chao, H.-P. Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study. J. Environ. Chem. Eng. 2016, 4, 2671−2682.

Namasivayam, C.; Yamuna, R. T. Adsorption of chromium (VI) by a low-cost adsorbent: Biogas residual slurry. Chemosphere 1995, 30, 561−578.

Marques, S. C. R.; Marcuzzo, J. M.; Baldan, M. R.; Mestre, A. S.; Carvalho, A. P. Pharmaceuticals removal by activated carbons: Role of morphology on cyclic thermal regeneration. Chem. Eng. J. 2017, 321, 233−244.

Pouretedal, H. R.; Sadegh, N. Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood. Journal of Water Process Engineering 2014, 1, 64−73.

Yaghmaeian, K.; Moussavi, G.; Alahabadi, A. Removal of amoxicillin from contaminated water using NH4Cl-activated carbon: Continuous flow fixed-bed adsorption and catalytic ozonation regeneration. Chem. Eng. J. 2014, 236, 538−544.

Worch, E. Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling; De Gruyter: 2012.

Sophia, A. C.; Lima, E. C. Removal of emerging contaminants from the environment by adsorption. Ecotoxicol. Environ. Saf. 2018, 150, 1−17.

L.A. Al-Khateeb, S. Almotiry, M.A. Salam, Adsorption of pharmaceutical pollutants onto graphene nanoplatelets, Chem. Eng. J. 248 (2014) 191–199.

G.Z. Kyzas, D.N. Bikiaris, M. Seredych, T.J. Bandosz, E.A. Deliyanni, Removal of dorzolamide from biomedical wastewaters with adsorption onto graphite oxide/poly(acrylic acid) grafted chitosan nanocomposite, Bioresour. Technol. 152 (2014) 399–406.

G. Yuan, L. Yan, Z. Liang, H. Hui, H. Junjie, M.S. Syed, S. Xingguang, Adsorption and removal of tetracycline antibiotics from aqueous solution by grapheme oxide, J. Colloid Interface Sci. 368 (2012) 540–546.

Y. Tang, H. Guo, L. Xiao, S. Yu, N. Gao, Y. Wang, Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics, Colloids Surf. A

(2013) 74–80.

Villaescusa, I., Fiol, N., Poch, J., Bianchi, A., Bazzicalupi, C., 2011. Mechanism of paracetamol removal by vegetable wastes: the contribution of P-P interactions, hydrogen bonding and hydrophobic effect. Desalination, 270, 135-142, 2010.

Adriano, W., Veredas, V., Santana, C., Gonçalves, L.B., 2005. Adsorption of amoxicillin on chitosan beads: kinetics, equilibrium and validation of finite bath models. Biochem. Eng. J. 27, 132–137.

Limousy, L., Ghouma, I., Ouederni, A., Jeguirim, M., 2017. Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of olive stone. Environ. Sci. Pollut. Control Ser. 24, 9993–10004.

Budyanto, S., Soedjono, S., Irawaty, W., Indraswati, N., 2008. Studies of Adsorption Equilibria and Kinetics of amoxicillin from simulated wastewater using activated carbon and natural bentonite. J. Environ. Protect. Sci. 2, 72–80.

Seedher, N., Sidhu, K., 2007. Studies on the use of tea leaves as pharmaceutical adsorbent. Int. J. Biol. Chem. 1, 162–167.

Portinho, R., Zanella, O., Feris, L.A., 2017. Grape stalk application for caffeine removal through adsorption. J. Environ. Manag. 202, 178–187.

Anastopoulos, I., Pashalidis, I., 2019. Τhe application of oxidized carbon derived from Luffa cylindrica for caffeine removal. Equilibrium, thermodynamic, kinetic and mechanistic analysis. J. Mol. Liq. 296, 112078.

Rakic, V., Damjanovic, L., Rac, V., Stosic, D., Dondur, V., Auroux, A., 2010. The adsorption of nicotine from aqueous solutions on different zeolite structures. Water Res. 44, 2047–2057.

Suksri, H., Pongjanyakul, T., 2008. Interaction of nicotine with magnesium aluminum silicate at different pHs: characterization of flocculate size, zeta potential and nicotine adsorption behavior. Colloids Surf. B Biointerfaces 65, 54–60.

Cai, J., Bennici, S., Shen, J., Auroux, A., 2014. Study of phenol and nicotine adsorption on nitrogen-modified mesoporous carbons. Water, Air, Soil Pollut. 225, 2088.

Rakic, V., Damjanovic, L., Rac, V., Stosic, D., Dondur, V., Auroux, A., 2010. The adsorption of nicotine from aqueous solutions on different zeolite structures. Water Res. 44, 2047–2057.

Liu, S.-H., Tang, W.-T., Yang, Y.-H., 2018. Adsorption of nicotine in aqueous solution by a defective graphene oxide. Sci. Total Environ. 643, 507–515.

Balarak, D., Mostafapour, F., Bazrafshan, E., Saleh, T.A., 2017c. Studies on the adsorption of amoxicillin on multi-wall carbon nanotubes. Water Sci. Technol. 75, 1599–1606.

L. Zuo, J. Ai, H. Fu, W. Chen, S. Zheng, Z. Xu, D. Zhu, Enhanced removal of sulfonamide antibiotics by KOH-activated anthracite coal: Batch and fixed-bed studies, Environ. Pollut. 211 (2016) 425–434.

A. Hethnawi, M. Alnajjar, A.D. Manasrah, A. Hassan, G. Vitale, R. Jeong, N. N. Nassar, Metformin removal from water using fixed-bed column of silica-alumina composite, Colloids Surf. A Physicochem. Eng. Asp. 597 (2020), 124814.

S. Wang, X. Li, H. Zhao, X. Quan, S. Chen, H. Yu, Enhanced adsorption of ionizable antibiotics on activated carbon fiber under electrochemical assistance in continuous-flow modes, Water Res 134 (2018) 162–169.

Published

2023-06-30

Issue

Section

Articles

How to Cite

REMOVAL OF PHARMACEUTICAL POLLUTANTS FROM SURFACE WATER BY DIFFERENT ADSORBENTS: A REVIEW. (2023). International Journal of Futuristic Innovation in Engineering, Science and Technology (IJFIEST), 2(2), 82-100. https://journal.inence.org/index.php/ijfiest/article/view/163