PHOTOCATALYTIC ACTIVITY OF SCHIFF BASE BIOPOLYMER BASED METAL OXIDE NANOCOMPOSITE

Authors

  • Ranjana Dewangan Department of Chemistry, Bharti Vishwvidyalaya, Durg (C.G.), 491001, India.

DOI:

https://doi.org/10.59367/zh3f2c04

Abstract

In recent years, Schiff bases are their unique applications in the photocatalytic process, the biopolymers of the Schiff base are becoming more widely recognized. These materials enhance the activity of metal oxide and are useful in the development of new photocatalysts. The synthesis and photocayalytic applications of the nanocomposites have much importance and concern in all aspects of chemistry and related fields such as biology and physics. As versatile ligands, Schiff bases are formed when carbonyl compounds (aldehydes or ketones) are condensed with amines. These reviews summarize the preparation and photocatalytic application of Schiff base biopolymer and their metal oxide nanocomposites

References

M. Nasrollahzadeh, N.S. SoheiliBidgoli, Z. Nezafat, 423-516 (2021). doi:10.1016/B978-0-323-89970-3.00007-X.

H.J. Arvind and K. Hern, J. Adv. Res. 622, 827 (2013). doi:10.4028/www.scientific.net/AMR.622- 623.827..

B. Sharma, P. Malik, P. Jain, Biopolymer reinforced nanocomposites: A comprehensive review, 16, 353-363 (2018). doi:10.1016/J.MTCOMM.2018.07.004

D. Zhu, Q. Zhou, Environ. Nanotech. Mon. Manag. 12, 100255 (2019). https://doi.org/10.1016/j.enmm.2019.100255.

A. Iqbal, Amani Al-Othman, N. M. Hamdan, Integ Environ Techn Wastewater Treat Sustain Develop. 261-283 (2022).

R. Dewangan, A. Hashmi, A. Asthana, A.K. Singh, Md Abu Bin Hasan Susan, Int. J environ. analyt chem. 1-21 (2020).

L.V.F. Oliveira, S. Bennici, L. Josien, L. Limousy, L.V.F. Bizeto, F.F. Camilo, Carbohydr. Polym. 230, 115621 (2020).

N.C. Joshi, K. Kaur, N. Kumar, N.S. Bhandari, A. Thakur, Nano-Struc. Nano-Obj. 25, 100669 (2021) https://doi.org/10.1016/j.nanoso.2021.100669.

M. Vinothkanan, C. Karthikeyan, G. Gnanakumar, A.R. Kim and D.J. Yoo, Spectrochim. Acta A Mol. Biomol. Spectrosc. 136, 256 (2015). doi:10.1016/j.saa.2014.09.031.

S. Sarkar, N.T. Ponce, A. Banerjee, R. Bandopadhyay, S. Rajendran, E. Lichtfouse, Environ. Chem. Lett. 18, 1569- 1580 (2020). https://doi.org/10.1007/s10311-020-01021-w.

R.D.C. Soltani, G. Shams Khoramabadi, H. Godini, Z. Noorimotlagh, Desal. Water Treatm. 56, 2551-2558 (2015). https://doi.org/10.1080/19443994.2014.964781.

N. SheibaniTezerji, M. Mehdi Foroughi, R. RezaeiBezenjani, N. Jandaghi, E. Rezaeipour and F. Rezvani, Food Chem. 311, 125747 (2020). doi:10.1016/j.foodchem.2019.125747.

M. Mitra, A. Ghosh, A. Mondal, K. Kargupta, S. Ganguly and D. Banerjee, Appl. Surf. Sci. 402, 418 (2017). doi:10.1016/j.apsusc.2017.01.072.

R.S. Dariani, A. Esmaeili, A. Mortezaali and S. Dehghanpour, Optik 127, 7143 (2016). doi:10.1016/j.ijleo.2016.04.026.

O. Rabbani, S. Ghasemi and S.R. Hosseini, J. Alloys Compd. 840, 155665 (2020). doi:10.1016/j. jallcom.2020.155665.

K. Zhang, M. Ye, A. Han and J. Yang, J. Solid State Chem. 277, 68 (2019). doi:10.1016/j. jssc.2019.05.046.

M.A. Moharrama, K.M.T. Ereiba, W. El Hotabya and A.M. Bakr, React. Funct. Polym. 101, 9 (2016). doi:10.1016/j.reactfunctpolym.2016.02.001.

N. Sun, T. Wang and C. Liu, Wood Sci. Technol. 50, 1243 (2016). doi:10.1007/s00226-016-0826-0.

S. Janani, K.S. Rani Sudha, E. Padmini and R.M. Lima, J. Environ. Chem. Eng. 4, 534 (2016). doi:10.1016/j.jece.2015.10.043.

G. Wang, W. Fan, Q. Li and N. Deng, Chemosphere 216, 707 (2019). doi:10.1016/j. chemosphere.2018.10.199.

A. Hashmi, A.K. Singh, B. Jain and S.A.C. Carabineiro, Nanomaterials 10, 105 (2020). doi:10.3390/nano10010105.

L. Wang, H. Xing, S. Gao, X. Ji and Z. Shen, Mater Chem. C 5, 2005 (2017). doi:10.1039/ C6TC05179K.

L. Fan, C. Luo, M. Sun, H. Qui and X. Li, Colloids Surf. B 103, 601 (2013). doi:10.1016/j. colsurfb.2012.11.023.

R.P. Liang, C.M. Liu, X.Y. Meng, J.W. Wang and J.D. Qiu, J. Chromatogr. A 1266, 95 (2012). doi:10.1016/j.chroma.2012.09.101.

Y. Zhu, W. Chu, N. Wang, T. Lin, W. Yang, J. Wen and X.S. Zhao. J. Name. 1 (2015). doi:10.1039/ C5RA14790E.

B.P. Nenavathu, S. Kandula and S. Verma, RSC Adv. 8, 19659 (2018). doi:10.1039/c8ra02237b.

H. Wang, Y.G. Liu, G.M. Zeng, X.J. Hu, X. Hu, T.T. Li, H.Y. Li, Y.Q. Wang and L.H. Jiang, Carbohydr. Polym. 113, 166 (2014). doi:10.1016/j.carbpol.2014.07.014.

J. Liu, G. Liu and W. Liu, Chem. Eng. J. 257, 299 (2014). doi:10.1016/j.cej.2014.07.021.

G.R. Bardajee, S.S. Hosseini and C. Vancaeyzeele, New J. Chem. 43, 3572 (2019). doi:10.1039/ C8NJ05800H.

J. Ahmad and K. Majid, Adv. Compos. Mater. 1, 374 (2018). doi:10.1007/s42114-018-0025-6.

P. Maijan, P. Amornpitoksuk, S. Chantarak, Polym. 203, 122771 (2020). https://doi.org/10.1016/j.polymer.2020.122771.

A. M. Mohammed, S. S. Mohtar , F. Aziz, M. Aziz, Anwar Ul-Hamid, Environ Chem Eng. 9, 105065 (2021). doi:10.1016/j.jece.2021.105065.

B. Piewnuan, J. Wootthikanokkhan, P. Ngaotrakanwiwat, V. Meeyoo, S. Chiarakorn, Supperlattics and Microstructures, 75, 105-117 (2014). https://doi.org/10.1016/j.spmi.2014.07.026.

E. A. El-Sharkaway, Rasha M. Kamel, Ibrahim M. El-Sherbiny & Sally S. Gharib, Environ Technol, 41, 2854-2862 (2020). doi: 10.1080/09593330.2019.1585481.

A. Rana, I. Hasan, B.H. Koo, R. Ahmad Khan, Colloids and Surfaces A Physicochemical and Engineering Aspects 637(48):128225 (2022). DOI:10.1016/j.colsurfa.2021.128225

T. Uma Rajalakshmi, G. Alagumuthu, Int. J All Res Edu Sci Methods.9 (2021) www.ijaresm.com

Y. Wang, L. He, X. Li, Engineering Journal of colloid and interface science (2021) doi:10.1016/j.jcis.2021.02.033.

Ounas, O.; El Foulani, A.A.; Lekhlif, B.; Jamal-Eddine, J. Immobilization of TiO2 into a poly methyl methacrylate (PMMA) as hybrid film for photocatalytic degradation of methylene blue. Materials Today: Proceedings. 2020, 22, 35-40, https://doi.org/10.1016/j.matpr.2019.08.068.

Zhu, Y.; Xu, S.; Yi, D. Photocatalytic degradation of methyl orange using polythiophene/titanium dioxide composites. React. Funct. Polym. 2010, 70, 282-287, https://doi.org/10.1016/j.reactfunctpolym.2010.01.007.

Fu, F.; Gu, J.; Xu, X.; Xiong, Q.; Zhang, Y.; Liu, X.; Zhou, J. Interfacial assembly of ZnO–cellulose nanocomposite films via a solution process: a one-step biomimetic approach and excellent photocatalytic properties. Cellulose. 2017, 24, 147-162, https://doi.org/10.1007/s10570-016-1087-7

Downloads

Published

2023-06-30

Issue

Section

Articles

How to Cite

PHOTOCATALYTIC ACTIVITY OF SCHIFF BASE BIOPOLYMER BASED METAL OXIDE NANOCOMPOSITE . (2023). International Journal of Futuristic Innovation in Engineering, Science and Technology (IJFIEST), 2(2), 22-31. https://doi.org/10.59367/zh3f2c04