A study of Friction stir welding with influence of tool variables

Authors

  • Deshmukh Hemraj M Department of Mechanical Engineering, Amity University Madhya Pradesh, Gwalior, India
  • Nasir Khan Department of Mechanical Engineering, Amity University Madhya Pradesh, Gwalior, India
  • Sandeep Rathee Department of Mechanical Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, India
  • Manu Srivastava Department of Mechanical Engineering, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India

DOI:

https://doi.org/10.59367/6cy5ht85

Keywords:

Innovative technology, FSW, Energy-saving

Abstract

The innovative technology known as friction stir welding (FSW) is gaining popularity for joining metals and their alloys. FSW made it simple to join materials that are challenging to join because of flaws that develop during the joining process, like porosity and partial penetration. Innovative solutions are required to meet the transportation department's high speed and energy-saving demands in order to meet increased productivity and cost-saving requirements. The increasing demand for lightweight structures has led to a rise in popularity for materials with a higher strength to weight ratio. Numerous industries, including transportation, railroads, aerospace, maritime, construction, and many more, could benefit from the use of the FSW. This study article's goal is to demonstrate how tool factors affect the field of FSW. This work has studied the impact of tool factors, including FSW tool geometry, tool material, and desirable qualities, and critically examined the FSW tool. In spite of this, there is still much to learn about the processes, and new study possibilities are noted.

References

N. Khan, S. Rathee, and M. Srivastava, “Friction stir welding: An overview on effect of tool variables,” in Materials Today: Proceedings, Elsevier Ltd, 2020, pp. 7196–7202. doi: 10.1016/j.matpr.2021.07.487.

H. Zhao, Q. Pan, Q. Qin, Y. Wu, and X. Su, “Effect of the processing parameters of friction stir processing on the microstructure and mechanical properties of 6063 aluminum alloy,” Materials Science and Engineering: A, vol. 751, pp. 70–79, Mar. 2019, doi: 10.1016/j.msea.2019.02.064.

V. Ventzke, J. F. Dos Santos, M. Koçak, G. Jennequin, and P. Gonthier-Maurin, “Characterisation of electron beam welded aluminium alloys,” 1999.

O. V. Flores et al., “MICROSTRUCTURAL ISSUES IN A FRICTION-STIR-WELDED ALUMINUM ALLOY,” 1998.

R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” Materials Science and Engineering R: Reports, vol. 50, no. 1–2. Aug. 31, 2005. doi: 10.1016/j.mser.2005.07.001.

K. Singh, G. Singh, and H. Singh, “Review on friction stir welding of magnesium alloys,” Journal of Magnesium and Alloys, vol. 6, no. 4. National Engg. Reaserch Center for Magnesium Alloys, pp. 399–416, Dec. 01, 2018. doi: 10.1016/j.jma.2018.06.001.

M. N. Avettand-Fènoël and A. Simar, “A review about Friction Stir Welding of metal matrix composites,” Materials Characterization, vol. 120. Elsevier Inc., pp. 1–17, 2016. doi: 10.1016/j.matchar.2016.07.010.

H. K. D. H. Bhadeshia and T. Debroy, “Critical assessment: Friction stir welding of steels,” Science and Technology of Welding and Joining, vol. 14, no. 3, pp. 193–196, Apr. 2009, doi: 10.1179/136217109X421300.

M. Srivastava, S. Rathee, S. Maheshwari, A. Noor Siddiquee, and T. K. Kundra, “A Review on Recent Progress in Solid State Friction Based Metal Additive Manufacturing: Friction Stir Additive Techniques,” Critical Reviews in Solid State and Materials Sciences, vol. 44, no. 5. Taylor and Francis Inc., pp. 345–377, Sep. 03, 2019. doi: 10.1080/10408436.2018.1490250.

G. K. Padhy, C. S. Wu, and S. Gao, “Friction stir based welding and processing technologies - processes, parameters, microstructures and applications: A review,” J Mater Sci Technol, vol. 34, no. 1, pp. 1–38, Jan. 2018, doi: 10.1016/j.jmst.2017.11.029.

Y. Bozkurt, S. Salman, and G. Çam, “Effect of welding parameters on lap shear tensile properties of dissimilar friction stir spot welded aa 5754-h22/2024-t3 joints,” Science and Technology of Welding and Joining, vol. 18, no. 4, pp. 337–345, May 2013, doi: 10.1179/1362171813Y.0000000111.

S. Rathee, S. Maheshwari, A. N. Siddiquee, and M. Srivastava, “Analysis of Microstructural Changes in Enhancement of Surface Properties in Sheet Forming of Al alloys via Friction Stir Processing,” in Materials Today: Proceedings, Elsevier Ltd, 2017, pp. 452–458. doi: 10.1016/j.matpr.2017.01.044.

S. Rathee, S. Maheshwari, A. N. Siddiquee, and M. Srivastava, “A Review of Recent Progress in Solid State Fabrication of Composites and Functionally Graded Systems Via Friction Stir Processing,” Critical Reviews in Solid State and Materials Sciences, vol. 43, no. 4. Taylor and Francis Inc., pp. 334–366, Jul. 04, 2018. doi: 10.1080/10408436.2017.1358146.

S. Rathee, S. Maheshwari, and A. N. Siddiquee, “Issues and strategies in composite fabrication via friction stir processing: A review,” Materials and Manufacturing Processes, vol. 33, no. 3. Taylor and Francis Inc., pp. 239–261, Feb. 17, 2018. doi: 10.1080/10426914.2017.1303162.

B. T. Ogunsemi, T. E. Abioye, T. I. Ogedengbe, and H. Zuhailawati, “A review of various improvement strategies for joint quality of AA 6061-T6 friction stir weldments,” Journal of Materials Research and Technology, vol. 11. Elsevier Editora Ltda, pp. 1061–1089, 2021. doi: 10.1016/j.jmrt.2021.01.070.

K. Elangovan, V. Balasubramanian, and S. Babu, “Developing an empirical relationship to predict tensile strength of friction stir welded AA2219 aluminum alloy,” J Mater Eng Perform, vol. 17, no. 6, pp. 820–830, Dec. 2008, doi: 10.1007/s11665-008-9240-6.

W. M. Thomas, K. I. Johnson, and C. S. Wiesner, “Friction stir welding-recent developments in tool and process technologies,” Adv Eng Mater, vol. 5, no. 7, pp. 485–490, Jul. 2003, doi: 10.1002/adem.200300355.

P. Cavaliere, G. Campanile, F. Panella, and A. Squillace, “Effect of welding parameters on mechanical and microstructural properties of AA6056 joints produced by Friction Stir Welding,” J Mater Process Technol, vol. 180, no. 1–3, pp. 263–270, Dec. 2006, doi: 10.1016/j.jmatprotec.2006.06.015.

M. Ericsson and R. Sandström, “Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG,” Int J Fatigue, vol. 25, no. 12, pp. 1379–1387, Dec. 2003, doi: 10.1016/S0142-1123(03)00059-8.

M. Ericsson, L. Z. Jin, and R. Sandström, “Fatigue properties of friction stir overlap welds,” Int J Fatigue, vol. 29, no. 1, pp. 57–68, Jan. 2007, doi: 10.1016/j.ijfatigue.2006.02.052.

S. Rathee, S. Maheshwari, A. N. Siddiquee, and M. Srivastava, “Effect of tool plunge depth on reinforcement particles distribution in surface composite fabrication via friction stir processing,” Defence Technology, vol. 13, no. 2, pp. 86–91, Apr. 2017, doi: 10.1016/j.dt.2016.11.003.

L. E. Murr, “Friction-Stir Welding and Processing,” in Handbook of Materials Structures, Properties, Processing and Performance, Cham: Springer International Publishing, 2015, pp. 891–912. doi: 10.1007/978-3-319-01815-7_51.

X. G. Chen, M. da Silva, P. Gougeon, and L. St-Georges, “Microstructure and mechanical properties of friction stir welded AA6063-B4C metal matrix composites,” Materials Science and Engineering: A, vol. 518, no. 1–2, pp. 174–184, Aug. 2009, doi: 10.1016/j.msea.2009.04.052.

Y. N. Zhang, X. Cao, S. Larose, and P. Wanjara, “Review of tools for friction stir welding and processing,” Canadian Metallurgical Quarterly, vol. 51, no. 3. pp. 250–261, Jul. 2012. doi: 10.1179/1879139512Y.0000000015.

I. Charit and R. S. Mishra, “Low temperature superplasticity in a friction-stir-processed ultrafine grained Al-Zn-Mg-Sc alloy,” Acta Mater, vol. 53, no. 15, pp. 4211–4223, Sep. 2005, doi: 10.1016/j.actamat.2005.05.021.

M. A. Sutton, A. P. Reynolds, J. Yan, B. Yang, and N. Yuan, “Microstructure and mixed mode I/II fracture of AA2524-T351 base material and friction stir welds,” Eng Fract Mech, vol. 73, no. 4, pp. 391–407, Mar. 2006, doi: 10.1016/j.engfracmech.2005.08.011.

M. A. Sutton, A. P. Reynolds, B. Yang, and R. Taylor, “Mode I fracture and microstructure for 2024-T3 friction stir welds.” [Online]. Available: www.elsevier.com/locate/msea

J. Chen, R. Ueji, and H. Fujii, “Double-sided friction-stir welding of magnesium alloy with concave-convex tools for texture control,” Mater Des, vol. 76, pp. 181–189, Jul. 2015, doi: 10.1016/j.matdes.2015.03.040.

S. D. Ji, Q. Wen, and Z. W. Li, “A novel friction stir diffusion bonding process using convex-vortex pin tools,” J Mater Sci Technol, vol. 48, pp. 23–30, Jul. 2020, doi: 10.1016/j.jmst.2020.01.042.

L. Trueba, G. Heredia, D. Rybicki, and L. B. Johannes, “Effect of tool shoulder features on defects and tensile properties of friction stir welded aluminum 6061-T6,” J Mater Process Technol, vol. 219, pp. 271–277, 2015, doi: 10.1016/j.jmatprotec.2014.12.027.

K. K. Mugada and K. Adepu, “Role of Tool Shoulder End Features on Friction Stir Weld Characteristics of 6082 Aluminum Alloy,” Journal of The Institution of Engineers (India): Series C, vol. 100, no. 2, pp. 343–350, Apr. 2019, doi: 10.1007/s40032-018-0451-9.

A. Scialpi, L. A. C. De Filippis, and P. Cavaliere, “Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy,” Mater Des, vol. 28, no. 4, pp. 1124–1129, 2007, doi: 10.1016/j.matdes.2006.01.031.

G. Padmanaban and V. Balasubramanian, “Selection of FSW tool pin profile, shoulder diameter and material for joining AZ31B magnesium alloy - An experimental approach,” Mater Des, vol. 30, no. 7, pp. 2647–2656, Aug. 2009, doi: 10.1016/j.matdes.2008.10.021.

R. Nandan, T. DebRoy, and H. K. D. H. Bhadeshia, “Recent advances in friction-stir welding - Process, weldment structure and properties,” Progress in Materials Science, vol. 53, no. 6. pp. 980–1023, Aug. 2008. doi: 10.1016/j.pmatsci.2008.05.001.

M. Aissani, S. Gachi, F. Boubenider, and Y. Benkedda, “Design and optimization of friction stir welding tool,” Materials and Manufacturing Processes, vol. 25, no. 11, pp. 1199–1205, Nov. 2010, doi: 10.1080/10426910903536733.

W. H. Jiang and R. Kovacevic, “Feasibility study of friction stir welding of 6061-T6 aluminium alloy with AISI 1018 steel,” in Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Oct. 2004, pp. 1323–1331. doi: 10.1243/0954405042323612.

P. A. Colegrove and H. R. Shercliff, “Development of Trivex friction stir welding tool Part 2 - Three-dimensional flow modelling,” Science and Technology of Welding and Joining, vol. 9, no. 4, pp. 352–361, Aug. 2004, doi: 10.1179/136217104225021661.

H. Nami, H. Adgi, M. Sharifitabar, and H. Shamabadi, “Microstructure and mechanical properties of friction stir welded Al/Mg2Si metal matrix cast composite,” Mater Des, vol. 32, no. 2, pp. 976–983, Feb. 2011, doi: 10.1016/j.matdes.2010.07.008.

K. Colligan and L. Martin, “Dynamic Material Deformation During Friction Stir Welding of Aluminum.”

J. VICTOR CHRISTY, A. H. ISMAIL MOURAD, M. M. SHERIF, and B. SHIVAMURTHY, “Review of recent trends in friction stir welding process of aluminum alloys and aluminum metal matrix composites,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 31, no. 11, pp. 3281–3309, Nov. 2021, doi: 10.1016/S1003-6326(21)65730-8.

B. T. Gibson et al., “Friction stir welding: Process, automation, and control,” J Manuf Process, vol. 16, no. 1, pp. 56–73, Jan. 2014, doi: 10.1016/j.jmapro.2013.04.002.

M. Bagheri Hariri, S. Gholami Shiri, Y. Yaghoubinezhad, and M. Mohammadi Rahvard, “The optimum combination of tool rotation rate and traveling speed for obtaining the preferable corrosion behavior and mechanical properties of friction stir welded AA5052 aluminum alloy,” Mater Des, vol. 50, pp. 620–634, 2013, doi: 10.1016/j.matdes.2013.03.027.

Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, “Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31,” Materials Science and Engineering: A, vol. 433, no. 1–2, pp. 50–54, Oct. 2006, doi: 10.1016/j.msea.2006.06.089.

C. Du, X. Wang, Q. Pan, K. Xue, M. Ni, and J. Liu, “Correlation between microstructure and mechanical properties of 6061-T6 double-side FSW joint,” J Manuf Process, vol. 38, pp. 122–134, Feb. 2019, doi: 10.1016/j.jmapro.2019.01.010.

W. Xu, J. Liu, G. Luan, and C. Dong, “Microstructure and mechanical properties of friction stir welded joints in 2219-T6 aluminum alloy,” Mater Des, vol. 30, no. 9, pp. 3460–3467, Oct. 2009, doi: 10.1016/j.matdes.2009.03.018.

M. Yuqing, K. Liming, L. Fencheng, C. Yuhua, and X. Li, “Investigations on temperature distribution, microstructure evolution, and property variations along thickness in friction stir welded joints for thick AA7075-T6 plates,” International Journal of Advanced Manufacturing Technology, vol. 86, no. 1–4, pp. 141–154, Sep. 2016, doi: 10.1007/s00170-015-8182-z.

A. Simar, C. Jonckheere, K. Deplus, T. Pardoen, and B. De Meester, “Comparing similar and dissimilar friction stir welds of 2017-6005A aluminium alloys,” Science and Technology of Welding and Joining, vol. 15, no. 3, pp. 254–259, Apr. 2010, doi: 10.1179/136217110X12665048207737.

M. Koilraj, V. Sundareswaran, S. Vijayan, and S. R. Koteswara Rao, “Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083 - Optimization of process parameters using Taguchi technique,” Mater Des, vol. 42, pp. 1–7, Dec. 2012, doi: 10.1016/j.matdes.2012.02.016.

G. ju Zhang, C. yuan Xiao, and O. O. Ojo, “Dissimilar friction stir spot welding of AA2024-T3/AA7075-T6 aluminum alloys under different welding parameters and media,” Defence Technology, vol. 17, no. 2, pp. 531–544, Apr. 2021, doi: 10.1016/j.dt.2020.03.008.

G. ju Zhang, C. yuan Xiao, and O. O. Ojo, “Dissimilar friction stir spot welding of AA2024-T3/AA7075-T6 aluminum alloys under different welding parameters and media,” Defence Technology, vol. 17, no. 2, pp. 531–544, Apr. 2021, doi: 10.1016/j.dt.2020.03.008.

P. Cavaliere, R. Nobile, F. W. Panella, and A. Squillace, “Mechanical and microstructural behaviour of 2024-7075 aluminium alloy sheets joined by friction stir welding,” Int J Mach Tools Manuf, vol. 46, no. 6, pp. 588–594, May 2006, doi: 10.1016/j.ijmachtools.2005.07.010.

W. Woo and H. Choo, “Softening behaviour of friction stir welded Al 6061-T6 and Mg AZ31B alloys,” Science and Technology of Welding and Joining, vol. 16, no. 3. pp. 267–272, Apr. 2011. doi: 10.1179/1362171811Y.0000000016.

V. Firouzdor and S. Kou, “Al-to-Mg friction stir welding: Effect of material position, travel speed, and rotation speed,” Metall Mater Trans A Phys Metall Mater Sci, vol. 41, no. 11, pp. 2914–2935, Nov. 2010, doi: 10.1007/s11661-010-0340-1.

P. K. Sahu, S. Pal, S. K. Pal, and R. Jain, “Influence of plate position, tool offset and tool rotational speed on mechanical properties and microstructures of dissimilar Al/Cu friction stir welding joints,” J Mater Process Technol, vol. 235, pp. 55–67, Sep. 2016, doi: 10.1016/j.jmatprotec.2016.04.014.

C. Genevois et al., “Reaction during Friction Stir Welding of Al and Cu,” Metallurgical and Materials Transactions A, vol. 42, no. 8, 2011, doi: 10.1007/s11661-011-0660-9ï.

F. C. Liu and Z. Y. Ma, “Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy,” Metall Mater Trans A Phys Metall Mater Sci, vol. 39, no. 10, pp. 2378–2388, Oct. 2008, doi: 10.1007/s11661-008-9586-2.

W. M. Thomas, E. D. Nicholas, E. R. Watts, and D. G. Staines, “Friction based welding technology for aluminium,” in Materials Science Forum, Trans Tech Publications Ltd, 2002, pp. 1543–1548. doi: 10.4028/www.scientific.net/msf.396-402.1543.

Downloads

Published

2024-03-11

Issue

Section

Articles

How to Cite

A study of Friction stir welding with influence of tool variables. (2024). International Journal of Futuristic Innovation in Arts, Humanities and Management (IJFIAHM), 3(1), 346-362. https://doi.org/10.59367/6cy5ht85

Similar Articles

51-60 of 77

You may also start an advanced similarity search for this article.